zoukankan      html  css  js  c++  java
  • Data wrangling:Join,Combine,and Reshape,in Pandas

    Data wrangling:Join,Combine,and Reshape,in Pandas

    import pandas as pd
    
    import numpy as np
    

    Hierarchical indexing

    data=pd.Series(np.random.randn(9),index=[['a','a','a','b','b','c','c','d','d'],[1,2,3,1,3,1,2,2,3]]);data
    
    a  1   -0.396969
       2   -0.348014
       3   -1.340860
    b  1   -0.502245
       3    0.640700
    c  1    0.063639
       2    1.290096
    d  2   -0.003899
       3    0.541342
    dtype: float64
    
    data.index
    
    MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
               labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]])
    

    In labels above,[0,0,0,1,1,2,2,3,3] represents the outer layer's label,0 represents 'a',1 represents 'b',2 represents 'c', 3 represents 'd'.
    [0,1,2,0,2,0,1,1,2] represents the inner layer's label,0 represents 1 in data's inner index, 1-->2,2-->3.

    data['b']
    
    1   -0.502245
    3    0.640700
    dtype: float64
    
    data['b':'c']
    
    b  1   -0.502245
       3    0.640700
    c  1    0.063639
       2    1.290096
    dtype: float64
    
    data.loc[['b','d']] # data['b','d'] is wrong,because in this case,'b' shall be index,'d' shall be columns.
    
    b  1   -0.502245
       3    0.640700
    d  2   -0.003899
       3    0.541342
    dtype: float64
    
    data.loc['b','d']
    
    ---------------------------------------------------------------------------
    
    IndexingError                             Traceback (most recent call last)
    
    <ipython-input-8-f6a5fae3fedc> in <module>()
    ----> 1 data.loc['b','d']
    
    
    D:Anacondalibsite-packagespandascoreindexing.py in __getitem__(self, key)
       1470             except (KeyError, IndexError):
       1471                 pass
    -> 1472             return self._getitem_tuple(key)
       1473         else:
       1474             # we by definition only have the 0th axis
    
    
    D:Anacondalibsite-packagespandascoreindexing.py in _getitem_tuple(self, tup)
        873 
        874         # no multi-index, so validate all of the indexers
    --> 875         self._has_valid_tuple(tup)
        876 
        877         # ugly hack for GH #836
    
    
    D:Anacondalibsite-packagespandascoreindexing.py in _has_valid_tuple(self, key)
        218         for i, k in enumerate(key):
        219             if i >= self.obj.ndim:
    --> 220                 raise IndexingError('Too many indexers')
        221             try:
        222                 self._validate_key(k, i)
    
    
    IndexingError: Too many indexers
    
    data.loc[:,2]
    
    a   -0.348014
    c    1.290096
    d   -0.003899
    dtype: float64
    
    data.unstack()
    
    1 2 3
    a -0.396969 -0.348014 -1.340860
    b -0.502245 NaN 0.640700
    c 0.063639 1.290096 NaN
    d NaN -0.003899 0.541342
    data.unstack().stack()
    
    a  1   -0.396969
       2   -0.348014
       3   -1.340860
    b  1   -0.502245
       3    0.640700
    c  1    0.063639
       2    1.290096
    d  2   -0.003899
       3    0.541342
    dtype: float64
    

    With a DataFrame,either axis can have a hierarchical index.

    frame=pd.DataFrame(np.arange(12).reshape((4,3)),index=[['a','a','b','b'],[1,2,1,2]],columns=[['Ohio','Ohio','Colorado'],['Green','Red','Green']])
    
    frame
    
    Ohio Colorado
    Green Red Green
    a 1 0 1 2
    2 3 4 5
    b 1 6 7 8
    2 9 10 11
    frame.index.names=['Key1','Key2']
    
    frame.columns.names=['state','color']
    
    frame
    
    state Ohio Colorado
    color Green Red Green
    Key1 Key2
    a 1 0 1 2
    2 3 4 5
    b 1 6 7 8
    2 9 10 11
    frame['Ohio']
    
    color Green Red
    Key1 Key2
    a 1 0 1
    2 3 4
    b 1 6 7
    2 9 10
    frame['Ohio']['Red']
    
    Key1  Key2
    a     1        1
          2        4
    b     1        7
          2       10
    Name: Red, dtype: int32
    
    frame[('a',1):('b',1)]
    
    state Ohio Colorado
    color Green Red Green
    Key1 Key2
    a 1 0 1 2
    2 3 4 5
    b 1 6 7 8
    frame[('a',1):('b',1)]['Ohio']
    
    color Green Red
    Key1 Key2
    a 1 0 1
    2 3 4
    b 1 6 7
    frame[('a',1):('b',1)]['Ohio']['Red']
    
    Key1  Key2
    a     1       1
          2       4
    b     1       7
    Name: Red, dtype: int32
    
    • Notice the level[] after another [] until to the specified column.
    help(frame.loc)
    
    Help on _LocIndexer in module pandas.core.indexing object:
    
    class _LocIndexer(_LocationIndexer)
     |  Access a group of rows and columns by label(s) or a boolean array.
     |  
     |  ``.loc[]`` is primarily label based, but may also be used with a
     |  boolean array.
     |  
     |  Allowed inputs are:
     |  
     |  - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is
     |    interpreted as a *label* of the index, and **never** as an
     |    integer position along the index).
     |  - A list or array of labels, e.g. ``['a', 'b', 'c']``.
     |  - A slice object with labels, e.g. ``'a':'f'``.
     |  
     |    .. warning:: Note that contrary to usual python slices, **both** the
     |        start and the stop are included
     |  
     |  - A boolean array of the same length as the axis being sliced,
     |    e.g. ``[True, False, True]``.
     |  - A ``callable`` function with one argument (the calling Series, DataFrame
     |    or Panel) and that returns valid output for indexing (one of the above)
     |  
     |  See more at :ref:`Selection by Label <indexing.label>`
     |  
     |  See Also
     |  --------
     |  DataFrame.at : Access a single value for a row/column label pair
     |  DataFrame.iloc : Access group of rows and columns by integer position(s)
     |  DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the
     |      Series/DataFrame.
     |  Series.loc : Access group of values using labels
     |  
     |  Examples
     |  --------
     |  **Getting values**
     |  
     |  >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
     |  ...      index=['cobra', 'viper', 'sidewinder'],
     |  ...      columns=['max_speed', 'shield'])
     |  >>> df
     |              max_speed  shield
     |  cobra               1       2
     |  viper               4       5
     |  sidewinder          7       8
     |  
     |  Single label. Note this returns the row as a Series.
     |  
     |  >>> df.loc['viper']
     |  max_speed    4
     |  shield       5
     |  Name: viper, dtype: int64
     |  
     |  List of labels. Note using ``[[]]`` returns a DataFrame.
     |  
     |  >>> df.loc[['viper', 'sidewinder']]
     |              max_speed  shield
     |  viper               4       5
     |  sidewinder          7       8
     |  
     |  Single label for row and column
     |  
     |  >>> df.loc['cobra', 'shield']
     |  2
     |  
     |  Slice with labels for row and single label for column. As mentioned
     |  above, note that both the start and stop of the slice are included.
     |  
     |  >>> df.loc['cobra':'viper', 'max_speed']
     |  cobra    1
     |  viper    4
     |  Name: max_speed, dtype: int64
     |  
     |  Boolean list with the same length as the row axis
     |  
     |  >>> df.loc[[False, False, True]]
     |              max_speed  shield
     |  sidewinder          7       8
     |  
     |  Conditional that returns a boolean Series
     |  
     |  >>> df.loc[df['shield'] > 6]
     |              max_speed  shield
     |  sidewinder          7       8
     |  
     |  Conditional that returns a boolean Series with column labels specified
     |  
     |  >>> df.loc[df['shield'] > 6, ['max_speed']]
     |              max_speed
     |  sidewinder          7
     |  
     |  Callable that returns a boolean Series
     |  
     |  >>> df.loc[lambda df: df['shield'] == 8]
     |              max_speed  shield
     |  sidewinder          7       8
     |  
     |  **Setting values**
     |  
     |  Set value for all items matching the list of labels
     |  
     |  >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50
     |  >>> df
     |              max_speed  shield
     |  cobra               1       2
     |  viper               4      50
     |  sidewinder          7      50
     |  
     |  Set value for an entire row
     |  
     |  >>> df.loc['cobra'] = 10
     |  >>> df
     |              max_speed  shield
     |  cobra              10      10
     |  viper               4      50
     |  sidewinder          7      50
     |  
     |  Set value for an entire column
     |  
     |  >>> df.loc[:, 'max_speed'] = 30
     |  >>> df
     |              max_speed  shield
     |  cobra              30      10
     |  viper              30      50
     |  sidewinder         30      50
     |  
     |  Set value for rows matching callable condition
     |  
     |  >>> df.loc[df['shield'] > 35] = 0
     |  >>> df
     |              max_speed  shield
     |  cobra              30      10
     |  viper               0       0
     |  sidewinder          0       0
     |  
     |  **Getting values on a DataFrame with an index that has integer labels**
     |  
     |  Another example using integers for the index
     |  
     |  >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
     |  ...      index=[7, 8, 9], columns=['max_speed', 'shield'])
     |  >>> df
     |     max_speed  shield
     |  7          1       2
     |  8          4       5
     |  9          7       8
     |  
     |  Slice with integer labels for rows. As mentioned above, note that both
     |  the start and stop of the slice are included.
     |  
     |  >>> df.loc[7:9]
     |     max_speed  shield
     |  7          1       2
     |  8          4       5
     |  9          7       8
     |  
     |  **Getting values with a MultiIndex**
     |  
     |  A number of examples using a DataFrame with a MultiIndex
     |  
     |  >>> tuples = [
     |  ...    ('cobra', 'mark i'), ('cobra', 'mark ii'),
     |  ...    ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
     |  ...    ('viper', 'mark ii'), ('viper', 'mark iii')
     |  ... ]
     |  >>> index = pd.MultiIndex.from_tuples(tuples)
     |  >>> values = [[12, 2], [0, 4], [10, 20],
     |  ...         [1, 4], [7, 1], [16, 36]]
     |  >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
     |  >>> df
     |                       max_speed  shield
     |  cobra      mark i           12       2
     |             mark ii           0       4
     |  sidewinder mark i           10      20
     |             mark ii           1       4
     |  viper      mark ii           7       1
     |             mark iii         16      36
     |  
     |  Single label. Note this returns a DataFrame with a single index.
     |  
     |  >>> df.loc['cobra']
     |           max_speed  shield
     |  mark i          12       2
     |  mark ii          0       4
     |  
     |  Single index tuple. Note this returns a Series.
     |  
     |  >>> df.loc[('cobra', 'mark ii')]
     |  max_speed    0
     |  shield       4
     |  Name: (cobra, mark ii), dtype: int64
     |  
     |  Single label for row and column. Similar to passing in a tuple, this
     |  returns a Series.
     |  
     |  >>> df.loc['cobra', 'mark i']
     |  max_speed    12
     |  shield        2
     |  Name: (cobra, mark i), dtype: int64
     |  
     |  Single tuple. Note using ``[[]]`` returns a DataFrame.
     |  
     |  >>> df.loc[[('cobra', 'mark ii')]]
     |                 max_speed  shield
     |  cobra mark ii          0       4
     |  
     |  Single tuple for the index with a single label for the column
     |  
     |  >>> df.loc[('cobra', 'mark i'), 'shield']
     |  2
     |  
     |  Slice from index tuple to single label
     |  
     |  >>> df.loc[('cobra', 'mark i'):'viper']
     |                       max_speed  shield
     |  cobra      mark i           12       2
     |             mark ii           0       4
     |  sidewinder mark i           10      20
     |             mark ii           1       4
     |  viper      mark ii           7       1
     |             mark iii         16      36
     |  
     |  Slice from index tuple to index tuple
     |  
     |  >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')]
     |                      max_speed  shield
     |  cobra      mark i          12       2
     |             mark ii          0       4
     |  sidewinder mark i          10      20
     |             mark ii          1       4
     |  viper      mark ii          7       1
     |  
     |  Raises
     |  ------
     |  KeyError:
     |      when any items are not found
     |  
     |  Method resolution order:
     |      _LocIndexer
     |      _LocationIndexer
     |      _NDFrameIndexer
     |      pandas._libs.indexing._NDFrameIndexerBase
     |      builtins.object
     |  
     |  Methods inherited from _LocationIndexer:
     |  
     |  __getitem__(self, key)
     |  
     |  ----------------------------------------------------------------------
     |  Methods inherited from _NDFrameIndexer:
     |  
     |  __call__(self, axis=None)
     |      Call self as a function.
     |  
     |  __iter__(self)
     |  
     |  __setitem__(self, key, value)
     |  
     |  ----------------------------------------------------------------------
     |  Data descriptors inherited from _NDFrameIndexer:
     |  
     |  __dict__
     |      dictionary for instance variables (if defined)
     |  
     |  __weakref__
     |      list of weak references to the object (if defined)
     |  
     |  ----------------------------------------------------------------------
     |  Data and other attributes inherited from _NDFrameIndexer:
     |  
     |  axis = None
     |  
     |  ----------------------------------------------------------------------
     |  Methods inherited from pandas._libs.indexing._NDFrameIndexerBase:
     |  
     |  __init__(self, /, *args, **kwargs)
     |      Initialize self.  See help(type(self)) for accurate signature.
     |  
     |  __reduce__ = __reduce_cython__(...)
     |  
     |  __setstate__ = __setstate_cython__(...)
     |  
     |  ----------------------------------------------------------------------
     |  Static methods inherited from pandas._libs.indexing._NDFrameIndexerBase:
     |  
     |  __new__(*args, **kwargs) from builtins.type
     |      Create and return a new object.  See help(type) for accurate signature.
     |  
     |  ----------------------------------------------------------------------
     |  Data descriptors inherited from pandas._libs.indexing._NDFrameIndexerBase:
     |  
     |  name
     |  
     |  ndim
     |  
     |  obj
    
    pd.MultiIndex.from_arrays([['Ohio','Ohio','Colorado'],['Green','Red','Green']],names=['state','color'])
    
    MultiIndex(levels=[['Colorado', 'Ohio'], ['Green', 'Red']],
               labels=[[1, 1, 0], [0, 1, 0]],
               names=['state', 'color'])
    

    Reodering and Sorting levels

    help(frame.swaplevel)
    
    Help on method swaplevel in module pandas.core.frame:
    
    swaplevel(i=-2, j=-1, axis=0) method of pandas.core.frame.DataFrame instance
        Swap levels i and j in a MultiIndex on a particular axis
        
        Parameters
        ----------
        i, j : int, string (can be mixed)
            Level of index to be swapped. Can pass level name as string.
        
        Returns
        -------
        swapped : type of caller (new object)
        
        .. versionchanged:: 0.18.1
        
           The indexes ``i`` and ``j`` are now optional, and default to
           the two innermost levels of the index.
    
    frame.swaplevel('Key1','Key2')
    
    state Ohio Colorado
    color Green Red Green
    Key2 Key1
    1 a 0 1 2
    2 a 3 4 5
    1 b 6 7 8
    2 b 9 10 11
    help(frame.sort_index)
    
    Help on method sort_index in module pandas.core.frame:
    
    sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None) method of pandas.core.frame.DataFrame instance
        Sort object by labels (along an axis)
        
        Parameters
        ----------
        axis : index, columns to direct sorting
        level : int or level name or list of ints or list of level names
            if not None, sort on values in specified index level(s)
        ascending : boolean, default True
            Sort ascending vs. descending
        inplace : bool, default False
            if True, perform operation in-place
        kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
             Choice of sorting algorithm. See also ndarray.np.sort for more
             information.  `mergesort` is the only stable algorithm. For
             DataFrames, this option is only applied when sorting on a single
             column or label.
        na_position : {'first', 'last'}, default 'last'
             `first` puts NaNs at the beginning, `last` puts NaNs at the end.
             Not implemented for MultiIndex.
        sort_remaining : bool, default True
            if true and sorting by level and index is multilevel, sort by other
            levels too (in order) after sorting by specified level
        
        Returns
        -------
        sorted_obj : DataFrame
    
    frame.sort_index(level=0)
    
    state Ohio Colorado
    color Green Red Green
    Key1 Key2
    a 1 0 1 2
    2 3 4 5
    b 1 6 7 8
    2 9 10 11
    frame.sort_index(level=1)
    
    state Ohio Colorado
    color Green Red Green
    Key1 Key2
    a 1 0 1 2
    b 1 6 7 8
    a 2 3 4 5
    b 2 9 10 11
    frame.sort_index(level='Key2')
    
    state Ohio Colorado
    color Green Red Green
    Key1 Key2
    a 1 0 1 2
    b 1 6 7 8
    a 2 3 4 5
    b 2 9 10 11
    frame.swaplevel(0,1).sort_index(level=0 )
    
    state Ohio Colorado
    color Green Red Green
    Key2 Key1
    1 a 0 1 2
    b 6 7 8
    2 a 3 4 5
    b 9 10 11

    Summary statistics by level

    frame
    
    state Ohio Colorado
    color Green Red Green
    Key1 Key2
    a 1 0 1 2
    2 3 4 5
    b 1 6 7 8
    2 9 10 11
    frame.sum(level='Key2')
    
    state Ohio Colorado
    color Green Red Green
    Key2
    1 6 8 10
    2 12 14 16
    frame.sum(level='Key1')
    
    state Ohio Colorado
    color Green Red Green
    Key1
    a 3 5 7
    b 15 17 19
    frame.sum(level='color',axis=1)
    
    color Green Red
    Key1 Key2
    a 1 2 1
    2 8 4
    b 1 14 7
    2 20 10

    Indexing with a DataFrame's columns

    frame=pd.DataFrame({'a':range(7),'b':range(7,0,-1),'c':['one','one','one','two','two','two','two'],'d':[0,1,2,0,1,2,3]})
    
    frame
    
    a b c d
    0 0 7 one 0
    1 1 6 one 1
    2 2 5 one 2
    3 3 4 two 0
    4 4 3 two 1
    5 5 2 two 2
    6 6 1 two 3
    frame2=frame.set_index(['c','d']);frame2
    
    a b
    c d
    one 0 0 7
    1 1 6
    2 2 5
    two 0 3 4
    1 4 3
    2 5 2
    3 6 1
    • By default,the columns are removed from the DataFrame,though you can leave them in:
    frame.set_index(['c','d'],drop=False)
    
    a b c d
    c d
    one 0 0 7 one 0
    1 1 6 one 1
    2 2 5 one 2
    two 0 3 4 two 0
    1 4 3 two 1
    2 5 2 two 2
    3 6 1 two 3
    • reset_index does the opposite of set_index.
    frame2.reset_index()
    
    c d a b
    0 one 0 0 7
    1 one 1 1 6
    2 one 2 2 5
    3 two 0 3 4
    4 two 1 4 3
    5 two 2 5 2
    6 two 3 6 1

    Combining and merging datasets

    Database-style DataFrame joins

    help(pd.merge)
    
    Help on function merge in module pandas.core.reshape.merge:
    
    merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
        Merge DataFrame objects by performing a database-style join operation by
        columns or indexes.
        
        If joining columns on columns, the DataFrame indexes *will be
        ignored*. Otherwise if joining indexes on indexes or indexes on a column or
        columns, the index will be passed on.
        
        Parameters
        ----------
        left : DataFrame
        right : DataFrame
        how : {'left', 'right', 'outer', 'inner'}, default 'inner'
            * left: use only keys from left frame, similar to a SQL left outer join;
              preserve key order
            * right: use only keys from right frame, similar to a SQL right outer join;
              preserve key order
            * outer: use union of keys from both frames, similar to a SQL full outer
              join; sort keys lexicographically
            * inner: use intersection of keys from both frames, similar to a SQL inner
              join; preserve the order of the left keys
        on : label or list
            Column or index level names to join on. These must be found in both
            DataFrames. If `on` is None and not merging on indexes then this defaults
            to the intersection of the columns in both DataFrames.
        left_on : label or list, or array-like
            Column or index level names to join on in the left DataFrame. Can also
            be an array or list of arrays of the length of the left DataFrame.
            These arrays are treated as if they are columns.
        right_on : label or list, or array-like
            Column or index level names to join on in the right DataFrame. Can also
            be an array or list of arrays of the length of the right DataFrame.
            These arrays are treated as if they are columns.
        left_index : boolean, default False
            Use the index from the left DataFrame as the join key(s). If it is a
            MultiIndex, the number of keys in the other DataFrame (either the index
            or a number of columns) must match the number of levels
        right_index : boolean, default False
            Use the index from the right DataFrame as the join key. Same caveats as
            left_index
        sort : boolean, default False
            Sort the join keys lexicographically in the result DataFrame. If False,
            the order of the join keys depends on the join type (how keyword)
        suffixes : 2-length sequence (tuple, list, ...)
            Suffix to apply to overlapping column names in the left and right
            side, respectively
        copy : boolean, default True
            If False, do not copy data unnecessarily
        indicator : boolean or string, default False
            If True, adds a column to output DataFrame called "_merge" with
            information on the source of each row.
            If string, column with information on source of each row will be added to
            output DataFrame, and column will be named value of string.
            Information column is Categorical-type and takes on a value of "left_only"
            for observations whose merge key only appears in 'left' DataFrame,
            "right_only" for observations whose merge key only appears in 'right'
            DataFrame, and "both" if the observation's merge key is found in both.
        
        validate : string, default None
            If specified, checks if merge is of specified type.
        
            * "one_to_one" or "1:1": check if merge keys are unique in both
              left and right datasets.
            * "one_to_many" or "1:m": check if merge keys are unique in left
              dataset.
            * "many_to_one" or "m:1": check if merge keys are unique in right
              dataset.
            * "many_to_many" or "m:m": allowed, but does not result in checks.
        
            .. versionadded:: 0.21.0
        
        Notes
        -----
        Support for specifying index levels as the `on`, `left_on`, and
        `right_on` parameters was added in version 0.23.0
        
        Examples
        --------
        
        >>> A              >>> B
            lkey value         rkey value
        0   foo  1         0   foo  5
        1   bar  2         1   bar  6
        2   baz  3         2   qux  7
        3   foo  4         3   bar  8
        
        >>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
           lkey  value_x  rkey  value_y
        0  foo   1        foo   5
        1  foo   4        foo   5
        2  bar   2        bar   6
        3  bar   2        bar   8
        4  baz   3        NaN   NaN
        5  NaN   NaN      qux   7
        
        Returns
        -------
        merged : DataFrame
            The output type will the be same as 'left', if it is a subclass
            of DataFrame.
        
        See also
        --------
        merge_ordered
        merge_asof
        DataFrame.join
    
    df1=pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1':range(7)});df1
    
    key data1
    0 b 0
    1 b 1
    2 a 2
    3 c 3
    4 a 4
    5 a 5
    6 b 6
    df2=pd.DataFrame({'key':['a','b','d'],'data2':range(3)});df2
    
    key data2
    0 a 0
    1 b 1
    2 d 2
    pd.merge(df1,df2)
    
    key data1 data2
    0 b 0 1
    1 b 1 1
    2 b 6 1
    3 a 2 0
    4 a 4 0
    5 a 5 0
    • By default,how is 'inner',meaning result is intersection. It's a good pratice to specify explicitly which column to join on using on.
    pd.merge(df1,df2,on='key')
    
    key data1 data2
    0 b 0 1
    1 b 1 1
    2 b 6 1
    3 a 2 0
    4 a 4 0
    5 a 5 0
    • If the column names are different in each object,you can specify them separately.
    df3=pd.DataFrame({'lkey':['b','b','a','c','a','a','b'],'data1':range(7)});df3
    
    lkey data1
    0 b 0
    1 b 1
    2 a 2
    3 c 3
    4 a 4
    5 a 5
    6 b 6
    df4=pd.DataFrame({'rkey':['a','b','d'],'data2':range(3)});df4
    
    rkey data2
    0 a 0
    1 b 1
    2 d 2
    pd.merge(df3,df4,left_on='lkey',right_on='rkey')
    
    lkey data1 rkey data2
    0 b 0 b 1
    1 b 1 b 1
    2 b 6 b 1
    3 a 2 a 0
    4 a 4 a 0
    5 a 5 a 0
    pd.merge(df3,df4,left_on='lkey',right_on='rkey',how='outer')
    
    lkey data1 rkey data2
    0 b 0.0 b 1.0
    1 b 1.0 b 1.0
    2 b 6.0 b 1.0
    3 a 2.0 a 0.0
    4 a 4.0 a 0.0
    5 a 5.0 a 0.0
    6 c 3.0 NaN NaN
    7 NaN NaN d 2.0
    pd.merge(df3,df4,left_on='lkey',right_on='rkey',how='left')
    
    lkey data1 rkey data2
    0 b 0 b 1.0
    1 b 1 b 1.0
    2 a 2 a 0.0
    3 c 3 NaN NaN
    4 a 4 a 0.0
    5 a 5 a 0.0
    6 b 6 b 1.0
    pd.merge(df3,df4,left_on='lkey',right_on='rkey',how='right')
    
    lkey data1 rkey data2
    0 b 0.0 b 1
    1 b 1.0 b 1
    2 b 6.0 b 1
    3 a 2.0 a 0
    4 a 4.0 a 0
    5 a 5.0 a 0
    6 NaN NaN d 2
    • Above, the many-to-one case has been demonstrated,and that means in pd.merge(df3,df4),values in column 'key' of df4 are all unique.Now,in terms of many-to-many,which means values in column 'key' of df4 are not unique,it forms the Cartesian product of rows.
    df1=pd.DataFrame({'key':['b','b','a','c','a','b'],'data1':range(6)});df1
    
    key data1
    0 b 0
    1 b 1
    2 a 2
    3 c 3
    4 a 4
    5 b 5
    df2=pd.DataFrame({'key':['a','b','a','b','d'],'data2':range(5)});df2
    
    key data2
    0 a 0
    1 b 1
    2 a 2
    3 b 3
    4 d 4
    pd.merge(df1,df2,on='key',how='left')
    
    key data1 data2
    0 b 0 1.0
    1 b 0 3.0
    2 b 1 1.0
    3 b 1 3.0
    4 a 2 0.0
    5 a 2 2.0
    6 c 3 NaN
    7 a 4 0.0
    8 a 4 2.0
    9 b 5 1.0
    10 b 5 3.0
    pd.merge(df1,df2,how='inner')
    
    key data1 data2
    0 b 0 1
    1 b 0 3
    2 b 1 1
    3 b 1 3
    4 b 5 1
    5 b 5 3
    6 a 2 0
    7 a 2 2
    8 a 4 0
    9 a 4 2
    • To merge with multiple keys,pass a list of column names.
    left=pd.DataFrame({'key1':['foo','foo','bar'],
                      'key2':['one','two','one'],
                      'lval':[1,2,3]});left
    
    key1 key2 lval
    0 foo one 1
    1 foo two 2
    2 bar one 3
    right=pd.DataFrame({'key1':['foo','foo','bar','bar'],
                       'key2':['one','one','one','one'],
                       'rval':[4,5,6,7]});right
    
    key1 key2 rval
    0 foo one 4
    1 foo one 5
    2 bar one 6
    3 bar one 7
    pd.merge(left,right,on=['key1','key2'],how='outer')
    
    key1 key2 lval rval
    0 foo one 1 4.0
    1 foo one 1 5.0
    2 foo two 2 NaN
    3 bar one 3 6.0
    4 bar one 3 7.0
    • A last issue to consider in merge operations is the treatment of overlapping column names;merge has a suffixes option for specifying strings to append to overlapping names in the left and right DataFrame objects.
    pd.merge(left,right,on='key1')
    
    key1 key2_x lval key2_y rval
    0 foo one 1 one 4
    1 foo one 1 one 5
    2 foo two 2 one 4
    3 foo two 2 one 5
    4 bar one 3 one 6
    5 bar one 3 one 7
    pd.merge(left,right,on='key1',suffixes=('_left','_right'))
    
    key1 key2_left lval key2_right rval
    0 foo one 1 one 4
    1 foo one 1 one 5
    2 foo two 2 one 4
    3 foo two 2 one 5
    4 bar one 3 one 6
    5 bar one 3 one 7

    Merging on Index

    In some cases, the merge key(s) in a DataFrame will be found in its index. In this case,you can pass left_index=True or right_index=True(or both) to indicate that the index should be used as the merge key.

    left1=pd.DataFrame({'key':['a','b','a','a','b','c'],'value':range(6)});left1
    
    key value
    0 a 0
    1 b 1
    2 a 2
    3 a 3
    4 b 4
    5 c 5
    right1=pd.DataFrame({'group_val':[3.5,7]},index=['a','b']);right1
    
    group_val
    a 3.5
    b 7.0
    pd.merge(left1,right1,left_on='key',right_index=True)
    
    key value group_val
    0 a 0 3.5
    2 a 2 3.5
    3 a 3 3.5
    1 b 1 7.0
    4 b 4 7.0
    pd.merge(left1,right1,left_on='key',right_index=True,how='outer')
    
    key value group_val
    0 a 0 3.5
    2 a 2 3.5
    3 a 3 3.5
    1 b 1 7.0
    4 b 4 7.0
    5 c 5 NaN

    With hierachically indexed data,things are more complicated,as joining on index is implicitly a multiple-key merge:

    lefth=pd.DataFrame({'key1':['Ohio','Ohio','Ohio','Nevada','Devada'],
                       'key2':[2000,2001,2002,2001,2002],
                       'data':np.arange(5)});lefth
    
    key1 key2 data
    0 Ohio 2000 0
    1 Ohio 2001 1
    2 Ohio 2002 2
    3 Nevada 2001 3
    4 Devada 2002 4
    righth=pd.DataFrame(np.arange(12).reshape((6,2)),index=[['Nevada','Nevada','Ohio','Ohio','Ohio','Ohio'],
                                                           [2001,2000,2000,2000,2001,2002]],
                       columns=['event1','event2']);righth
    
    event1 event2
    Nevada 2001 0 1
    2000 2 3
    Ohio 2000 4 5
    2000 6 7
    2001 8 9
    2002 10 11
    pd.merge(lefth,righth,left_on=['key1','key2'],right_index=True)
    
    key1 key2 data event1 event2
    0 Ohio 2000 0 4 5
    0 Ohio 2000 0 6 7
    1 Ohio 2001 1 8 9
    2 Ohio 2002 2 10 11
    3 Nevada 2001 3 0 1
    pd.merge(lefth,righth,left_on=['key1','key2'],right_index=True,how='outer')
    
    key1 key2 data event1 event2
    0 Ohio 2000 0.0 4.0 5.0
    0 Ohio 2000 0.0 6.0 7.0
    1 Ohio 2001 1.0 8.0 9.0
    2 Ohio 2002 2.0 10.0 11.0
    3 Nevada 2001 3.0 0.0 1.0
    4 Devada 2002 4.0 NaN NaN
    4 Nevada 2000 NaN 2.0 3.0
    • Using the indexes of both sides of the merge is also possible.
    left2=pd.DataFrame([[1,2],[3,4],[5,6]],
                      index=['a','b','c'],
                      columns=['Ohio','Nevada']);left2
    
    Ohio Nevada
    a 1 2
    b 3 4
    c 5 6
    right2=pd.DataFrame([[7,8],[9,10],[11,12],[13,14]],
                       index=['b','c','d','e'],
                       columns=['Missori','Alabama']);right2
    
    Missori Alabama
    b 7 8
    c 9 10
    d 11 12
    e 13 14
    pd.merge(left2,right2,how='outer',left_index=True,right_index=True)
    
    Ohio Nevada Missori Alabama
    a 1.0 2.0 NaN NaN
    b 3.0 4.0 7.0 8.0
    c 5.0 6.0 9.0 10.0
    d NaN NaN 11.0 12.0
    e NaN NaN 13.0 14.0
    • DataFrame has a convenient join instance for merging by index.It can also be used to combine together many DataFrame objects having the same or similiar indexes but non-overlapping columns.
    left2.join(right2,how='outer')
    
    Ohio Nevada Missori Alabama
    a 1.0 2.0 NaN NaN
    b 3.0 4.0 7.0 8.0
    c 5.0 6.0 9.0 10.0
    d NaN NaN 11.0 12.0
    e NaN NaN 13.0 14.0
    left1
    
    key value
    0 a 0
    1 b 1
    2 a 2
    3 a 3
    4 b 4
    5 c 5
    right1
    
    group_val
    a 3.5
    b 7.0
    left1.join(right1,on='key')
    
    key value group_val
    0 a 0 3.5
    1 b 1 7.0
    2 a 2 3.5
    3 a 3 3.5
    4 b 4 7.0
    5 c 5 NaN
    another=pd.DataFrame([[7,8],[9,10],[11,12],[16,17]],index=['a','c','e','f'],columns=['New York','Oregon']);another
    
    New York Oregon
    a 7 8
    c 9 10
    e 11 12
    f 16 17
    left2
    
    Ohio Nevada
    a 1 2
    b 3 4
    c 5 6
    right2
    
    Missori Alabama
    b 7 8
    c 9 10
    d 11 12
    e 13 14
    left2.join([right2,another])
    
    Ohio Nevada Missori Alabama New York Oregon
    a 1 2 NaN NaN 7.0 8.0
    b 3 4 7.0 8.0 NaN NaN
    c 5 6 9.0 10.0 9.0 10.0
    left2.join([right2,another],how='outer')
    
    D:Anacondalibsite-packagespandascoreframe.py:6369: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
    of pandas will change to not sort by default.
    
    To accept the future behavior, pass 'sort=False'.
    
    To retain the current behavior and silence the warning, pass 'sort=True'.
    
      verify_integrity=True)
    
    Ohio Nevada Missori Alabama New York Oregon
    a 1.0 2.0 NaN NaN 7.0 8.0
    b 3.0 4.0 7.0 8.0 NaN NaN
    c 5.0 6.0 9.0 10.0 9.0 10.0
    d NaN NaN 11.0 12.0 NaN NaN
    e NaN NaN 13.0 14.0 11.0 12.0
    f NaN NaN NaN NaN 16.0 17.0

    Concatenating along an axis

    Another kind of data combination operation is referred to interchangebly as concatenation,binding or stacking.Numpy's concatenate can do this with Numpy arrays.

    arr=np.arange(12).reshape((3,4));arr
    
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11]])
    
    np.concatenate([arr,arr],axis=1)
    
    array([[ 0,  1,  2,  3,  0,  1,  2,  3],
           [ 4,  5,  6,  7,  4,  5,  6,  7],
           [ 8,  9, 10, 11,  8,  9, 10, 11]])
    
    np.concatenate([arr,arr],axis=0)
    
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11]])
    
    s1=pd.Series([0,1],index=['a','b']);s1
    
    a    0
    b    1
    dtype: int64
    
    s2=pd.Series([2,3,4],index=['c','d','e']);s2
    
    c    2
    d    3
    e    4
    dtype: int64
    
    s3=pd.Series([5,6],index=['f','g'])
    
    pd.concat([s1,s2,s3])
    
    a    0
    b    1
    c    2
    d    3
    e    4
    f    5
    g    6
    dtype: int64
    
    • By default,concat works along axis=0,producing another Series.If you pass axis=1,the result will instead be a DataFrame(axis=1 is the column)
    pd.concat([s1,s2,s3],axis=1)
    
    D:Anacondalibsite-packagesipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
    of pandas will change to not sort by default.
    
    To accept the future behavior, pass 'sort=False'.
    
    To retain the current behavior and silence the warning, pass 'sort=True'.
    
      """Entry point for launching an IPython kernel.
    
    0 1 2
    a 0.0 NaN NaN
    b 1.0 NaN NaN
    c NaN 2.0 NaN
    d NaN 3.0 NaN
    e NaN 4.0 NaN
    f NaN NaN 5.0
    g NaN NaN 6.0
    s4=pd.concat([s1,s2]);s4
    
    a    0
    b    1
    c    2
    d    3
    e    4
    dtype: int64
    
    s1
    
    a    0
    b    1
    dtype: int64
    
    pd.concat([s1,s4])
    
    a    0
    b    1
    a    0
    b    1
    c    2
    d    3
    e    4
    dtype: int64
    
    pd.concat([s1,s4],axis=1)
    
    D:Anacondalibsite-packagesipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
    of pandas will change to not sort by default.
    
    To accept the future behavior, pass 'sort=False'.
    
    To retain the current behavior and silence the warning, pass 'sort=True'.
    
      """Entry point for launching an IPython kernel.
    
    0 1
    a 0.0 0
    b 1.0 1
    c NaN 2
    d NaN 3
    e NaN 4
    • join:either 'inner' or 'outer'(default);whether to intersection(inner) or union(outer) together indexes along the other axis.
    pd.concat([s1,s4],axis=1,join='inner') 
    
    0 1
    a 0 0
    b 1 1
    • join_axes: Specific indexes to use for the other n-1 axes insteda of performing union/intersection loggic
    pd.concat([s1,s2],axis=1,join_axes=[['a','c','b','e']])
    
    0 1
    a 0.0 NaN
    c NaN 2.0
    b 1.0 NaN
    e NaN 4.0
    • keys:values to associate with objects being concatenated,forming a hierarchical index along the concatenation axis;can either be a list or array of arbitrary values,an array of tuples,or a list of arrays(if multiple-level arrays passed in levels)
    result=pd.concat([s1,s1,s3],keys=['one','two','three']);result
    
    one    a    0
           b    1
    two    a    0
           b    1
    three  f    5
           g    6
    dtype: int64
    
    result.unstack()
    
    a b f g
    one 0.0 1.0 NaN NaN
    two 0.0 1.0 NaN NaN
    three NaN NaN 5.0 6.0

    In the case of combining Series along axis=1,the keys become the DataFrame columns headers.

    pd.concat([s1,s2,s3],axis=1,keys=['one','two','three'])
    
    D:Anacondalibsite-packagesipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
    of pandas will change to not sort by default.
    
    To accept the future behavior, pass 'sort=False'.
    
    To retain the current behavior and silence the warning, pass 'sort=True'.
    
      """Entry point for launching an IPython kernel.
    
    one two three
    a 0.0 NaN NaN
    b 1.0 NaN NaN
    c NaN 2.0 NaN
    d NaN 3.0 NaN
    e NaN 4.0 NaN
    f NaN NaN 5.0
    g NaN NaN 6.0
    • The same logix extends to DataFrame objects:
    df1=pd.DataFrame(np.arange(6).reshape((3,2)),index=['a','b','c'],columns=['one','two']);df1
    
    one two
    a 0 1
    b 2 3
    c 4 5
    df2=pd.DataFrame(5+np.arange(4).reshape((2,2)),index=['a','c'],columns=['three','four']);df2
    
    three four
    a 5 6
    c 7 8
    pd.concat([df1,df2],axis=1,keys=['level1','level2'],sort=True)
    
    level1 level2
    one two three four
    a 0 1 5.0 6.0
    b 2 3 NaN NaN
    c 4 5 7.0 8.0
    pd.concat([df1,df2],sort=False)
    
    one two three four
    a 0.0 1.0 NaN NaN
    b 2.0 3.0 NaN NaN
    c 4.0 5.0 NaN NaN
    a NaN NaN 5.0 6.0
    c NaN NaN 7.0 8.0
    pd.concat([df1,df2],sort=True)
    
    four one three two
    a NaN 0.0 NaN 1.0
    b NaN 2.0 NaN 3.0
    c NaN 4.0 NaN 5.0
    a 6.0 NaN 5.0 NaN
    c 8.0 NaN 7.0 NaN
    • If you pass a dict of objects instead of a list,the dict's keys will be used for the keys option.
    pd.concat({'level1':df1,'level2':df2},axis=1,sort=False)
    
    level1 level2
    one two three four
    a 0 1 5.0 6.0
    b 2 3 NaN NaN
    c 4 5 7.0 8.0
    • We can name the created axis levels with the names argument.names: Names for created hierarchical levels if keys and//or levels passed.
    pd.concat([df1,df2],keys=['level1','level2'],names=['upper','lower'],sort=False)
    
    one two three four
    upper lower
    level1 a 0.0 1.0 NaN NaN
    b 2.0 3.0 NaN NaN
    c 4.0 5.0 NaN NaN
    level2 a NaN NaN 5.0 6.0
    c NaN NaN 7.0 8.0
    pd.concat([df1,df2],keys=['level1','level2'],names=['upper','lower'],sort=False,axis=1)
    
    upper level1 level2
    lower one two three four
    a 0 1 5.0 6.0
    b 2 3 NaN NaN
    c 4 5 7.0 8.0
    df1=pd.DataFrame(np.random.randn(3,4),columns=['a','b','c','d']);df1
    
    a b c d
    0 -0.285393 -0.625140 -0.244858 1.870425
    1 -1.651745 -2.094833 0.233144 0.083170
    2 2.497868 0.004263 1.376631 -0.497225
    df2=pd.DataFrame(np.random.randn(2,3),columns=['b','d','a']);df2
    
    b d a
    0 0.330073 -0.546400 -1.291143
    1 -0.541348 -1.003454 1.578515
    • A last consideration concerns DataFrames in which the row index does not contain any relevent data.
    pd.concat([df1,df2],sort=False)
    
    a b c d
    0 -0.285393 -0.625140 -0.244858 1.870425
    1 -1.651745 -2.094833 0.233144 0.083170
    2 2.497868 0.004263 1.376631 -0.497225
    0 -1.291143 0.330073 NaN -0.546400
    1 1.578515 -0.541348 NaN -1.003454
    • ignore_index:Do not preserve indexes along concatenation axis,instead producing a new range(total_length) index.
    pd.concat([df1,df2],sort=False,ignore_index=True)
    
    a b c d
    0 -0.285393 -0.625140 -0.244858 1.870425
    1 -1.651745 -2.094833 0.233144 0.083170
    2 2.497868 0.004263 1.376631 -0.497225
    3 -1.291143 0.330073 NaN -0.546400
    4 1.578515 -0.541348 NaN -1.003454
    pd.concat([df1,df2],axis=1)
    
    a b c d b d a
    0 -0.285393 -0.625140 -0.244858 1.870425 0.330073 -0.546400 -1.291143
    1 -1.651745 -2.094833 0.233144 0.083170 -0.541348 -1.003454 1.578515
    2 2.497868 0.004263 1.376631 -0.497225 NaN NaN NaN
    pd.concat([df1,df2],axis=1,keys=['one','two'])
    
    one two
    a b c d b d a
    0 -0.285393 -0.625140 -0.244858 1.870425 0.330073 -0.546400 -1.291143
    1 -1.651745 -2.094833 0.233144 0.083170 -0.541348 -1.003454 1.578515
    2 2.497868 0.004263 1.376631 -0.497225 NaN NaN NaN
    pd.concat([df1,df2],axis=1,keys=['one','two'],names=['name1','name2'])
    
    name1 one two
    name2 a b c d b d a
    0 -0.285393 -0.625140 -0.244858 1.870425 0.330073 -0.546400 -1.291143
    1 -1.651745 -2.094833 0.233144 0.083170 -0.541348 -1.003454 1.578515
    2 2.497868 0.004263 1.376631 -0.497225 NaN NaN NaN

    Combining data with overlap

    help(np.where)
    
    Help on built-in function where in module numpy.core.multiarray:
    
    where(...)
        where(condition, [x, y])
        
        Return elements, either from `x` or `y`, depending on `condition`.
        
        If only `condition` is given, return ``condition.nonzero()``.
        
        Parameters
        ----------
        condition : array_like, bool
            When True, yield `x`, otherwise yield `y`.
        x, y : array_like, optional
            Values from which to choose. `x`, `y` and `condition` need to be
            broadcastable to some shape.
        
        Returns
        -------
        out : ndarray or tuple of ndarrays
            If both `x` and `y` are specified, the output array contains
            elements of `x` where `condition` is True, and elements from
            `y` elsewhere.
        
            If only `condition` is given, return the tuple
            ``condition.nonzero()``, the indices where `condition` is True.
        
        See Also
        --------
        nonzero, choose
        
        Notes
        -----
        If `x` and `y` are given and input arrays are 1-D, `where` is
        equivalent to::
        
            [xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
        
        Examples
        --------
        >>> np.where([[True, False], [True, True]],
        ...          [[1, 2], [3, 4]],
        ...          [[9, 8], [7, 6]])
        array([[1, 8],
               [3, 4]])
        
        >>> np.where([[0, 1], [1, 0]])
        (array([0, 1]), array([1, 0]))
        
        >>> x = np.arange(9.).reshape(3, 3)
        >>> np.where( x > 5 )
        (array([2, 2, 2]), array([0, 1, 2]))
        >>> x[np.where( x > 3.0 )]               # Note: result is 1D.
        array([ 4.,  5.,  6.,  7.,  8.])
        >>> np.where(x < 5, x, -1)               # Note: broadcasting.
        array([[ 0.,  1.,  2.],
               [ 3.,  4., -1.],
               [-1., -1., -1.]])
        
        Find the indices of elements of `x` that are in `goodvalues`.
        
        >>> goodvalues = [3, 4, 7]
        >>> ix = np.isin(x, goodvalues)
        >>> ix
        array([[False, False, False],
               [ True,  True, False],
               [False,  True, False]])
        >>> np.where(ix)
        (array([1, 1, 2]), array([0, 1, 1]))
    
    x=np.arange(9).reshape(3,3);x
    
    array([[0, 1, 2],
           [3, 4, 5],
           [6, 7, 8]])
    
    np.where(x>5)
    
    (array([2, 2, 2], dtype=int64), array([0, 1, 2], dtype=int64))
    
    x[np.where(x>5)]
    
    array([6, 7, 8])
    
    x[(np.array([2,2,2]),np.array([0,1,2]))]
    
    array([6, 7, 8])
    
    x[2]
    
    array([6, 7, 8])
    

    There is another data combination situation that cannot be expressed as either a merge or concatenation operation.You may have two datasets whose indexes overlap in full or part.As a motivating example,consider Numpy's where function,which performs the array-oriented equivalent of an if-else expression.

    a=pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index=['f','e','d','c','b','a']);a
    
    f    NaN
    e    2.5
    d    NaN
    c    3.5
    b    4.5
    a    NaN
    dtype: float64
    
    b=pd.Series(np.arange(len(a),dtype=np.float64),index=['f','e','d','c','b','a']);b
    
    f    0.0
    e    1.0
    d    2.0
    c    3.0
    b    4.0
    a    5.0
    dtype: float64
    
    b[-1]=np.nan;b
    
    f    0.0
    e    1.0
    d    2.0
    c    3.0
    b    4.0
    a    NaN
    dtype: float64
    
    pd.isnull(a)
    
    f     True
    e    False
    d     True
    c    False
    b    False
    a     True
    dtype: bool
    
    np.where(pd.isnull(a),b,a)
    
    array([0. , 2.5, 2. , 3.5, 4.5, nan])
    
    • Series has a combine_first method,which performs the equivalent of this operation along with pandas's usual data alignment logic:
    help(pd.Series.combine_first)
    
    Help on function combine_first in module pandas.core.series:
    
    combine_first(self, other)
        Combine Series values, choosing the calling Series's values
        first. Result index will be the union of the two indexes
        
        Parameters
        ----------
        other : Series
        
        Returns
        -------
        combined : Series
        
        Examples
        --------
        >>> s1 = pd.Series([1, np.nan])
        >>> s2 = pd.Series([3, 4])
        >>> s1.combine_first(s2)
        0    1.0
        1    4.0
        dtype: float64
        
        See Also
        --------
        Series.combine : Perform elementwise operation on two Series
            using a given function
    
    b
    
    f    0.0
    e    1.0
    d    2.0
    c    3.0
    b    4.0
    a    NaN
    dtype: float64
    
    b[:-2]
    
    f    0.0
    e    1.0
    d    2.0
    c    3.0
    dtype: float64
    
    a[2:]
    
    d    NaN
    c    3.5
    b    4.5
    a    NaN
    dtype: float64
    
    a
    
    f    NaN
    e    2.5
    d    NaN
    c    3.5
    b    4.5
    a    NaN
    dtype: float64
    
    b[:-2].combine_first(a[2:]) # Combine Series values, choosing the calling Series's values first. Result index will be the union of the two indexes
    
    a    NaN
    b    4.5
    c    3.0
    d    2.0
    e    1.0
    f    0.0
    dtype: float64
    
    df1=pd.DataFrame({'a':[1,np.nan,5,np.nan],'b':[np.nan,2,np.nan,6],
                     'c':range(2,18,4)});df1
    
    a b c
    0 1.0 NaN 2
    1 NaN 2.0 6
    2 5.0 NaN 10
    3 NaN 6.0 14
    df2=pd.DataFrame({'a':[5,4,np.nan,3,7],'b':[np.nan,3,4,6,8]});df2
    
    a b
    0 5.0 NaN
    1 4.0 3.0
    2 NaN 4.0
    3 3.0 6.0
    4 7.0 8.0
    df1.combine_first(df2)
    
    a b c
    0 1.0 NaN 2.0
    1 4.0 2.0 6.0
    2 5.0 4.0 10.0
    3 3.0 6.0 14.0
    4 7.0 8.0 NaN

    With DattaFrames,combine_first does the same thing column by column,so you can think of it as 'patching' missing data in the calling object with data from the object you pass.

    Reshaping and pivoting

    Reshaping with Hierarchical indexing

    • stack
      This 'rotates' or pivots from the columns in the data to the rows
    • unstack
      This pivots from the rows into the columns

    The word stack can be thought as the stack of index.

    data=pd.DataFrame(np.arange(6).reshape((2,3)),index=pd.Index(['Ohio','Colorado'],name='state'),columns=pd.Index(['one','two','three'],name='number'));data
    
    number one two three
    state
    Ohio 0 1 2
    Colorado 3 4 5

    The reason why put index=pd.Index is to use name parameter in pd.Index,and that is not in pd.DataFrame.

    result=data.stack()
    
    result
    
    state     number
    Ohio      one       0
              two       1
              three     2
    Colorado  one       3
              two       4
              three     5
    dtype: int32
    

    From a hierarchically indexed Series,you can rearrange the data back into a DataFrame with unstack.

    result.unstack()
    
    number one two three
    state
    Ohio 0 1 2
    Colorado 3 4 5
    • By default, the innermost level is unstacked(same with stack).You can unstack a different level by passing a level number of name.
    result.unstack('state')
    
    state Ohio Colorado
    number
    one 0 3
    two 1 4
    three 2 5
    result.unstack(0)
    
    state Ohio Colorado
    number
    one 0 3
    two 1 4
    three 2 5
    result
    
    state     number
    Ohio      one       0
              two       1
              three     2
    Colorado  one       3
              two       4
              three     5
    dtype: int32
    
    result.unstack()#the default level is innermost level,'number'
    
    number one two three
    state
    Ohio 0 1 2
    Colorado 3 4 5
    result.unstack(1)  # The innermost level is 'number'
    
    number one two three
    state
    Ohio 0 1 2
    Colorado 3 4 5
    • Unstacking might introduces missing data if all of the values in the level are not found in each of the subgroups.
    s1=pd.Series([0,1,2,3],index=['a','b','c','d']);s1
    
    a    0
    b    1
    c    2
    d    3
    dtype: int64
    
    s2=pd.Series([4,5,6],index=['c','d','e']);s2
    
    c    4
    d    5
    e    6
    dtype: int64
    
    data2=pd.concat([s1,s2],keys=['one','two']);data2
    
    one  a    0
         b    1
         c    2
         d    3
    two  c    4
         d    5
         e    6
    dtype: int64
    
    data2.unstack()
    
    a b c d e
    one 0.0 1.0 2.0 3.0 NaN
    two NaN NaN 4.0 5.0 6.0
    data2.unstack().stack()
    
    one  a    0.0
         b    1.0
         c    2.0
         d    3.0
    two  c    4.0
         d    5.0
         e    6.0
    dtype: float64
    
    data2.unstack().stack(dropna=False)
    
    one  a    0.0
         b    1.0
         c    2.0
         d    3.0
         e    NaN
    two  a    NaN
         b    NaN
         c    4.0
         d    5.0
         e    6.0
    dtype: float64
    
    • When you unstack in a DataFrame,the level unstacked becomes the lowest level in the result:
    result
    
    state     number
    Ohio      one       0
              two       1
              three     2
    Colorado  one       3
              two       4
              three     5
    dtype: int32
    
    df=pd.DataFrame({'left':result,'right':result+5},columns=pd.Index(['left','right'],name='side'));df # parameter `name` rather than names!
    
    side left right
    state number
    Ohio one 0 5
    two 1 6
    three 2 7
    Colorado one 3 8
    two 4 9
    three 5 10
    df.unstack('state')
    
    side left right
    state Ohio Colorado Ohio Colorado
    number
    one 0 3 5 8
    two 1 4 6 9
    three 2 5 7 10
    df.unstack('number')
    
    side left right
    number one two three one two three
    state
    Ohio 0 1 2 5 6 7
    Colorado 3 4 5 8 9 10

    When calling stack,we can indicate the name of the axis to stack.

    df.unstack('state').stack('side')
    
    state Colorado Ohio
    number side
    one left 3 0
    right 8 5
    two left 4 1
    right 9 6
    three left 5 2
    right 10 7

    Pivoting 'long' to 'wide' format

    data=pd.read_csv(r'G:PycharmProjectDataAnalysispydata-book-2nd-editionexamplesmacrodata.csv')
    
    data.head()
    
    year quarter realgdp realcons realinv realgovt realdpi cpi m1 tbilrate unemp pop infl realint
    0 1959.0 1.0 2710.349 1707.4 286.898 470.045 1886.9 28.98 139.7 2.82 5.8 177.146 0.00 0.00
    1 1959.0 2.0 2778.801 1733.7 310.859 481.301 1919.7 29.15 141.7 3.08 5.1 177.830 2.34 0.74
    2 1959.0 3.0 2775.488 1751.8 289.226 491.260 1916.4 29.35 140.5 3.82 5.3 178.657 2.74 1.09
    3 1959.0 4.0 2785.204 1753.7 299.356 484.052 1931.3 29.37 140.0 4.33 5.6 179.386 0.27 4.06
    4 1960.0 1.0 2847.699 1770.5 331.722 462.199 1955.5 29.54 139.6 3.50 5.2 180.007 2.31 1.19
    periods=pd.PeriodIndex(year=data.year,quarter=data.quarter,name='date')
    
    columns=pd.Index(['realgdp','infl','unemp'],name='item');columns
    
    Index(['realgdp', 'infl', 'unemp'], dtype='object', name='item')
    
    data=data.reindex(columns=columns)
    
    help(data.reindex)
    
    Help on method reindex in module pandas.core.frame:
    
    reindex(labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=nan, limit=None, tolerance=None) method of pandas.core.frame.DataFrame instance
        Conform DataFrame to new index with optional filling logic, placing
        NA/NaN in locations having no value in the previous index. A new object
        is produced unless the new index is equivalent to the current one and
        copy=False
        
        Parameters
        ----------
        labels : array-like, optional
            New labels / index to conform the axis specified by 'axis' to.
        index, columns : array-like, optional (should be specified using keywords)
            New labels / index to conform to. Preferably an Index object to
            avoid duplicating data
        axis : int or str, optional
            Axis to target. Can be either the axis name ('index', 'columns')
            or number (0, 1).
        method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}, optional
            method to use for filling holes in reindexed DataFrame.
            Please note: this is only applicable to DataFrames/Series with a
            monotonically increasing/decreasing index.
        
            * default: don't fill gaps
            * pad / ffill: propagate last valid observation forward to next
              valid
            * backfill / bfill: use next valid observation to fill gap
            * nearest: use nearest valid observations to fill gap
        
        copy : boolean, default True
            Return a new object, even if the passed indexes are the same
        level : int or name
            Broadcast across a level, matching Index values on the
            passed MultiIndex level
        fill_value : scalar, default np.NaN
            Value to use for missing values. Defaults to NaN, but can be any
            "compatible" value
        limit : int, default None
            Maximum number of consecutive elements to forward or backward fill
        tolerance : optional
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations most
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
        
            Tolerance may be a scalar value, which applies the same tolerance
            to all values, or list-like, which applies variable tolerance per
            element. List-like includes list, tuple, array, Series, and must be
            the same size as the index and its dtype must exactly match the
            index's type.
        
            .. versionadded:: 0.21.0 (list-like tolerance)
        
        Examples
        --------
        
        ``DataFrame.reindex`` supports two calling conventions
        
        * ``(index=index_labels, columns=column_labels, ...)``
        * ``(labels, axis={'index', 'columns'}, ...)``
        
        We *highly* recommend using keyword arguments to clarify your
        intent.
        
        Create a dataframe with some fictional data.
        
        >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
        >>> df = pd.DataFrame({
        ...      'http_status': [200,200,404,404,301],
        ...      'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]},
        ...       index=index)
        >>> df
                   http_status  response_time
        Firefox            200           0.04
        Chrome             200           0.02
        Safari             404           0.07
        IE10               404           0.08
        Konqueror          301           1.00
        
        Create a new index and reindex the dataframe. By default
        values in the new index that do not have corresponding
        records in the dataframe are assigned ``NaN``.
        
        >>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
        ...             'Chrome']
        >>> df.reindex(new_index)
                       http_status  response_time
        Safari               404.0           0.07
        Iceweasel              NaN            NaN
        Comodo Dragon          NaN            NaN
        IE10                 404.0           0.08
        Chrome               200.0           0.02
        
        We can fill in the missing values by passing a value to
        the keyword ``fill_value``. Because the index is not monotonically
        increasing or decreasing, we cannot use arguments to the keyword
        ``method`` to fill the ``NaN`` values.
        
        >>> df.reindex(new_index, fill_value=0)
                       http_status  response_time
        Safari                 404           0.07
        Iceweasel                0           0.00
        Comodo Dragon            0           0.00
        IE10                   404           0.08
        Chrome                 200           0.02
        
        >>> df.reindex(new_index, fill_value='missing')
                      http_status response_time
        Safari                404          0.07
        Iceweasel         missing       missing
        Comodo Dragon     missing       missing
        IE10                  404          0.08
        Chrome                200          0.02
        
        We can also reindex the columns.
        
        >>> df.reindex(columns=['http_status', 'user_agent'])
                   http_status  user_agent
        Firefox            200         NaN
        Chrome             200         NaN
        Safari             404         NaN
        IE10               404         NaN
        Konqueror          301         NaN
        
        Or we can use "axis-style" keyword arguments
        
        >>> df.reindex(['http_status', 'user_agent'], axis="columns")
                   http_status  user_agent
        Firefox            200         NaN
        Chrome             200         NaN
        Safari             404         NaN
        IE10               404         NaN
        Konqueror          301         NaN
        
        To further illustrate the filling functionality in
        ``reindex``, we will create a dataframe with a
        monotonically increasing index (for example, a sequence
        of dates).
        
        >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
        >>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
        ...                    index=date_index)
        >>> df2
                    prices
        2010-01-01     100
        2010-01-02     101
        2010-01-03     NaN
        2010-01-04     100
        2010-01-05      89
        2010-01-06      88
        
        Suppose we decide to expand the dataframe to cover a wider
        date range.
        
        >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
        >>> df2.reindex(date_index2)
                    prices
        2009-12-29     NaN
        2009-12-30     NaN
        2009-12-31     NaN
        2010-01-01     100
        2010-01-02     101
        2010-01-03     NaN
        2010-01-04     100
        2010-01-05      89
        2010-01-06      88
        2010-01-07     NaN
        
        The index entries that did not have a value in the original data frame
        (for example, '2009-12-29') are by default filled with ``NaN``.
        If desired, we can fill in the missing values using one of several
        options.
        
        For example, to backpropagate the last valid value to fill the ``NaN``
        values, pass ``bfill`` as an argument to the ``method`` keyword.
        
        >>> df2.reindex(date_index2, method='bfill')
                    prices
        2009-12-29     100
        2009-12-30     100
        2009-12-31     100
        2010-01-01     100
        2010-01-02     101
        2010-01-03     NaN
        2010-01-04     100
        2010-01-05      89
        2010-01-06      88
        2010-01-07     NaN
        
        Please note that the ``NaN`` value present in the original dataframe
        (at index value 2010-01-03) will not be filled by any of the
        value propagation schemes. This is because filling while reindexing
        does not look at dataframe values, but only compares the original and
        desired indexes. If you do want to fill in the ``NaN`` values present
        in the original dataframe, use the ``fillna()`` method.
        
        See the :ref:`user guide <basics.reindexing>` for more.
        
        Returns
        -------
        reindexed : DataFrame
    
    ldata=data.stack().reset_index().rename(columns={'0':'value'})
    
    ldata[:10]
    
    level_0 item 0
    0 0 realgdp 2710.349
    1 0 infl 0.000
    2 0 unemp 5.800
    3 1 realgdp 2778.801
    4 1 infl 2.340
    5 1 unemp 5.100
    6 2 realgdp 2775.488
    7 2 infl 2.740
    8 2 unemp 5.300
    9 3 realgdp 2785.204

    Pivoting 'wide' to 'long' format

    An inverse operation to pivot for DataFrames is pands.melt.Rather than transforming one column into many in a new DataFrame, it mergers multiple columns into one,producing a DataFrame that is longer than the input.

    help(pd.DataFrame.melt)
    
    Help on function melt in module pandas.core.frame:
    
    melt(self, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None)
        "Unpivots" a DataFrame from wide format to long format, optionally
        leaving identifier variables set.
        
        This function is useful to massage a DataFrame into a format where one
        or more columns are identifier variables (`id_vars`), while all other
        columns, considered measured variables (`value_vars`), are "unpivoted" to
        the row axis, leaving just two non-identifier columns, 'variable' and
        'value'.
        
        .. versionadded:: 0.20.0
        
        Parameters
        ----------
        frame : DataFrame
        id_vars : tuple, list, or ndarray, optional
            Column(s) to use as identifier variables.
        value_vars : tuple, list, or ndarray, optional
            Column(s) to unpivot. If not specified, uses all columns that
            are not set as `id_vars`.
        var_name : scalar
            Name to use for the 'variable' column. If None it uses
            ``frame.columns.name`` or 'variable'.
        value_name : scalar, default 'value'
            Name to use for the 'value' column.
        col_level : int or string, optional
            If columns are a MultiIndex then use this level to melt.
        
        See also
        --------
        melt
        pivot_table
        DataFrame.pivot
        
        Examples
        --------
        >>> import pandas as pd
        >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
        ...                    'B': {0: 1, 1: 3, 2: 5},
        ...                    'C': {0: 2, 1: 4, 2: 6}})
        >>> df
           A  B  C
        0  a  1  2
        1  b  3  4
        2  c  5  6
        
        >>> df.melt(id_vars=['A'], value_vars=['B'])
           A variable  value
        0  a        B      1
        1  b        B      3
        2  c        B      5
        
        >>> df.melt(id_vars=['A'], value_vars=['B', 'C'])
           A variable  value
        0  a        B      1
        1  b        B      3
        2  c        B      5
        3  a        C      2
        4  b        C      4
        5  c        C      6
        
        The names of 'variable' and 'value' columns can be customized:
        
        >>> df.melt(id_vars=['A'], value_vars=['B'],
        ...         var_name='myVarname', value_name='myValname')
           A myVarname  myValname
        0  a         B          1
        1  b         B          3
        2  c         B          5
        
        If you have multi-index columns:
        
        >>> df.columns = [list('ABC'), list('DEF')]
        >>> df
           A  B  C
           D  E  F
        0  a  1  2
        1  b  3  4
        2  c  5  6
        
        >>> df.melt(col_level=0, id_vars=['A'], value_vars=['B'])
           A variable  value
        0  a        B      1
        1  b        B      3
        2  c        B      5
        
        >>> df.melt(id_vars=[('A', 'D')], value_vars=[('B', 'E')])
          (A, D) variable_0 variable_1  value
        0      a          B          E      1
        1      b          B          E      3
        2      c          B          E      5
    
    df=pd.DataFrame({'key':['foo','bar','baz'],
                    'A':[1,2,3],
                    'B':[4,5,6],
                    'C':[7,8,9]});df
    
    key A B C
    0 foo 1 4 7
    1 bar 2 5 8
    2 baz 3 6 9
    melted=pd.melt(df,['key']);melted
    
    key variable value
    0 foo A 1
    1 bar A 2
    2 baz A 3
    3 foo B 4
    4 bar B 5
    5 baz B 6
    6 foo C 7
    7 bar C 8
    8 baz C 9
    reshaped=melted.pivot('key','variable','value');reshaped
    
    variable A B C
    key
    bar 2 5 8
    baz 3 6 9
    foo 1 4 7
    reshaped.reset_index()
    
    variable key A B C
    0 bar 2 5 8
    1 baz 3 6 9
    2 foo 1 4 7
    pd.melt(df,id_vars=['key'],value_vars=['A','B'])
    
    key variable value
    0 foo A 1
    1 bar A 2
    2 baz A 3
    3 foo B 4
    4 bar B 5
    5 baz B 6
    pd.melt(df,value_vars=['A','B','C'])
    
    variable value
    0 A 1
    1 A 2
    2 A 3
    3 B 4
    4 B 5
    5 B 6
    6 C 7
    7 C 8
    8 C 9
    
    
    ##### 愿你一寸一寸地攻城略地,一点一点地焕然一新 #####
  • 相关阅读:
    python之mysqldb模块安装
    消失的那3个月__怎么看代码的小结
    四年测试经验总结
    python学习笔记系列----(八)python常用的标准库
    业务逻辑中的测试总结(二)----业务与数据库交互需求的测试分解
    python学习笔记系列----(七)类
    【QUESTION】
    python学习笔记系列----(六)错误和异常
    python学习笔记系列----(五)输入和输出
    Android6.0.1 移植:显示系统(一)--测试framebuffer
  • 原文地址:https://www.cnblogs.com/johnyang/p/12735061.html
Copyright © 2011-2022 走看看