zoukankan      html  css  js  c++  java
  • np.random总结

    import numpy as np
    

    (1)np.random.random_sample

    help(np.random.random_sample)
    
    Help on built-in function random_sample:
    
    random_sample(...) method of mtrand.RandomState instance
        random_sample(size=None)
        
        Return random floats in the half-open interval [0.0, 1.0).
        
        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::
        
          (b - a) * random_sample() + a
        
        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        
        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).
        
        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098
        >>> type(np.random.random_sample())
        <type 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428])
        
        Three-by-two array of random numbers from [-5, 0):
        
        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984],
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])
    

    np.random.random_sample((m,n))给出m*n的均匀分布的随机数组。

    np.random.random_sample((3,3))
    
    array([[0.29173378, 0.29419769, 0.47702224],
           [0.67796941, 0.12930519, 0.06604015],
           [0.41514769, 0.61113887, 0.2035459 ]])
    

    如果要得到[a,b)的均匀分布的随机数组,只需要(b-a)*np.random.random_sample((m,n))+a:

    (5-2)*np.random.random_sample((3,3))+2  #2 ~5均匀分布随机数
    
    array([[4.19892161, 4.66196903, 2.90223592],
           [4.70942939, 2.73620934, 2.22161209],
           [3.46348355, 4.58905218, 2.33377181]])
    

    (2)np.random.rand

    help(np.random.rand)
    
    Help on built-in function rand:
    
    rand(...) method of mtrand.RandomState instance
        rand(d0, d1, ..., dn)
        
        Random values in a given shape.
        
        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.
        
        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, should all be positive.
            If no argument is given a single Python float is returned.
        
        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.
        
        See Also
        --------
        random
        
        Notes
        -----
        This is a convenience function. If you want an interface that
        takes a shape-tuple as the first argument, refer to
        np.random.random_sample .
        
        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random
    

    np.random.rand(d0,d1..)np.random.random_sample的简洁用法,也是形成d0*d1*...维度的[0,1)的随机数组

    np.random.rand(3,3)
    
    array([[0.30821699, 0.64856611, 0.17575119],
           [0.99049116, 0.60985425, 0.01740196],
           [0.49243809, 0.98859105, 0.71051433]])
    

    (3)np.random.randn

    help(np.random.randn)
    
    Help on built-in function randn:
    
    randn(...) method of mtrand.RandomState instance
        randn(d0, d1, ..., dn)
        
        Return a sample (or samples) from the "standard normal" distribution.
        
        If positive, int_like or int-convertible arguments are provided,
        `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1 (if any of the :math:`d_i` are
        floats, they are first converted to integers by truncation). A single
        float randomly sampled from the distribution is returned if no
        argument is provided.
        
        This is a convenience function.  If you want an interface that takes a
        tuple as the first argument, use `numpy.random.standard_normal` instead.
        
        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, should be all positive.
            If no argument is given a single Python float is returned.
        
        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.
        
        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        
        Notes
        -----
        For random samples from :math:`N(mu, sigma^2)`, use:
        
        ``sigma * np.random.randn(...) + mu``
        
        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315 #random
        
        Two-by-four array of samples from N(3, 6.25):
        
        >>> 2.5 * np.random.randn(2, 4) + 3
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],  #random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]]) #random
    

    np.random.randn(d0,d1...dn)是形成(d0*d1...dn)维度的均值为0,均方差为1的标准正太分布随机数组.

    (4) np.random.randint

    help(np.random.randint)
    
    Help on built-in function randint:
    
    randint(...) method of mtrand.RandomState instance
        randint(low, high=None, size=None, dtype='l')
        
        Return random integers from `low` (inclusive) to `high` (exclusive).
        
        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).
        
        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. All dtypes are determined by their
            name, i.e., 'int64', 'int', etc, so byteorder is not available
            and a specific precision may have different C types depending
            on the platform. The default value is 'np.int'.
        
            .. versionadded:: 1.11.0
        
        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.
        
        See Also
        --------
        random.random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted. In particular, this other one is the one to use to generate
            uniformly distributed discrete non-integers.
        
        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
        
        Generate a 2 x 4 array of ints between 0 and 4, inclusive:
        
        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])
    

    randint(low, high=None, size=None, dtype='l')是得到size规模的[low,high)的随机数组,如果high=None,那么,形成size规模的[0,low)的随机数组;

    random_integers(low,high=None,size=None,dtype='1')与randint类似,唯一的区别是[low,high]。

    (5)np.random.binomial

    help(np.random.binomial)
    
    Help on built-in function binomial:
    
    binomial(...) method of mtrand.RandomState instance
        binomial(n, p, size=None)
        
        Draw samples from a binomial distribution.
        
        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)
        
        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.
        
        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.
        
        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        
        Notes
        -----
        The probability density for the binomial distribution is
        
        .. math:: P(N) = inom{n}{N}p^N(1-p)^{n-N},
        
        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.
        
        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.
        
        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               http://en.wikipedia.org/wiki/Binomial_distribution
        
        Examples
        --------
        Draw samples from the distribution:
        
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.
        
        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?
        
        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.
        
        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.
    

    binomial(n, p, size=None) 形成符合二项分布概率的size的[0,n]的随机数组,其中二项分布的单次成功概率为p

    np.random.binomial(5,0.1,4)
    
    array([0, 2, 0, 0])
    
    5 in np.random.binomial(5,0.1,10000)
    
    False
    
    5 in np.random.binomial(5,0.1,1000000)
    
    True
    ##### 愿你一寸一寸地攻城略地,一点一点地焕然一新 #####
  • 相关阅读:
    [探索][管理]《现在,发现你的优势》
    【成功智慧】010.依靠忍耐度过困难时期
    爱情五十九课,就差一句话
    VSS2005 托管 VS2010代码
    一个网站的金字塔战略
    【成功智慧】013.脚踏实地的去做,没有完不成的任务
    MU.Bread 麦卡优娜
    【成功智慧】012.要有耐心去等待成功的到来
    【成功智慧】009.要能够承受所发生的事情
    【成功智慧】014.一日复一日的度过难关
  • 原文地址:https://www.cnblogs.com/johnyang/p/14528465.html
Copyright © 2011-2022 走看看