zoukankan      html  css  js  c++  java
  • 稀疏图(邻接链表),并查集,最短路径(Dijkstra,spfa),最小生成树(kruskal,prim)

    全部函数通过杭电 1142,1162,1198,1213等题目测试。

    #include<iostream>
    #include<vector>
    #include<queue>
    #include<stack>
    #include<algorithm>
    #include<stdio.h>
    #include<stdlib.h>
    using namespace std;
    
    /*
    //函数集合声明下,方便查看
    void Dijkstra(const denseGraph& dg, int s);
    void spfa(const denseGraph& dg, int s);
    weightType prim(const denseGraph& dg, int s);
    void makeSet(int x);
    int findSet(int x);
    void unionSet(int x, int y);
    weightType kruskal(const denseGraph& dg);
    */
    
    
    //稀疏图,邻接链表表示
    #define N 1000            //表示顶点数最大值
    #define NOEDGE 1000000    //表示无边,用于距离类求解中
    typedef double weightType;    //表示带边权的类型
    struct edge{
        int v, w;
        weightType val;
        edge(int v = -1, int w = -1, weightType val = NOEDGE) :v(v), w(w), val(val){}
    };
    struct nodeGraph{
        int v;
        weightType val;
        nodeGraph* next;
        nodeGraph(int v = -1, weightType val = NOEDGE, nodeGraph* next = NULL) :v(v), val(val), next(next){}
    };
    typedef nodeGraph* link;
    struct sparseGraph{
        int Vcnt, Ecnt;    //顶点数,边数
        bool dg;    //有向图 ?
        vector<link> adj;    //邻接链表
        sparseGraph(int v, bool dg = false) :adj(v), Vcnt(v), Ecnt(0), dg(dg){
            adj.assign(v, NULL);
        }
        void insert(edge e){
            int v = e.v, w = e.w;
            weightType val = e.val;
            adj[v] = new nodeGraph(w, val, adj[v]);
            if (!dg) adj[w] = new nodeGraph(v, val, adj[w]);
            ++Ecnt;
        }
        void show(){
            printf("Vcnt = %d, Ecnt = %d, Directed : %d
    ", Vcnt, Ecnt, dg);
            link p = NULL;
            for (int i = 0; i < Vcnt; ++i){
                p = adj[i];
                printf("%d: ", i);
                while (p){
                    cout << p->v << ',';
                    cout << p->val;
                    p = p->next;
                    if (p) printf(" ");
                }
                printf("
    ");
            }
        }
    };
    
    //用于Dijkstra,prim中的队列优化,可选
    struct keyValue{
        int key, value;
        keyValue(int key, int value) :key(key), value(value){}
    };
    template<class T>
    struct myGreater{
        bool operator() (const T& x, const T& y) const{ return x.key > y.key; }
    };
    
    //Dijkstra算法
    weightType dDijkstra[N];    //存放所有顶点到 s 的最短路径距离
    int pDijkstra[N];        //pDijkstra[i],路径存在时,存放节点 i 的前驱,不存在时,-1
    void Dijkstra(const sparseGraph &sg, int s)
    {
        bool visit[N];
        for (int i = 0; i < sg.Vcnt; ++i){
            visit[i] = false;
            dDijkstra[i] = NOEDGE;
            pDijkstra[i] = -1;
        }
        link p = sg.adj[s];
        while (p){
            dDijkstra[p->v] = p->val;
            pDijkstra[p->v] = s;
            p = p->next;
        }
        visit[s] = true; dDijkstra[s] = 0;
        for (int i = 0; i < sg.Vcnt - 1; ++i){
            int min = NOEDGE;
            int v = 0;
            /*优先队列代替
            priority_queue < keyValue, vector<keyValue>, myGreater<keyValue> > qq;
            for (int j = 0; j < sg.Vcnt; ++j)
                if (!visit[j]) qq.push(keyValue(dDijkstra[j], j));
            keyValue u = qq.top(); 
            v = u.value; min = dDijkstra[v];
            */
            for (int j = 0; j < sg.Vcnt; ++j){
                if (!visit[j] && dDijkstra[j] < min){
                    v = j; min = dDijkstra[j];
                }
            }
            visit[v] = true;
            p = sg.adj[v];
            while (p){
                if (!visit[p->v] && p->val + min < dDijkstra[p->v]){
                    dDijkstra[p->v] = p->val + min;
                    pDijkstra[p->v] = v;
                }
                p = p->next;
            }
        }
    }
    
    //最短路径 SPFA算法
    weightType dSpfa[N];
    int pSpfa[N];
    void spfa(const sparseGraph& sg, int s)
    {
        bool visit[N];
        for (int i = 0; i < sg.Vcnt; ++i){
            visit[i] = false;
            dSpfa[i] = NOEDGE;
            pSpfa[i] = -1;
        }
        dSpfa[s] = 0;
        int u;
        link p = NULL;
        queue<int> q;
        q.push(s);
        while (!q.empty()){
            u = q.front(); q.pop();
            p = sg.adj[u];
            while (p){
                int v = p->v;
                if (dSpfa[u] + p->val < dSpfa[v]){
                    dSpfa[v] = dSpfa[u] + p->val;
                    pSpfa[v] = u;
                    if (!visit[v]) q.push(v);
                }
                p = p->next;
            }
        }
    }
    //最小生成树 prim
    weightType dPrim[N];    //存放所有顶点到 s 的最短路径距离
    weightType prim(const sparseGraph &sg, int s)
    {
        weightType sum = 0;
        bool visit[N];
        for (int i = 0; i < sg.Vcnt; ++i){
            visit[i] = false;
            dPrim[i] = NOEDGE;
        }
        link p = sg.adj[s];
        while (p){
            dPrim[p->v] = p->val;
            p = p->next;
        }
        visit[s] = true; dPrim[s] = 0;
        for (int i = 0; i < sg.Vcnt - 1; ++i){
            weightType min = NOEDGE;
            int v = 0;
            for (int j = 0; j < sg.Vcnt; ++j){
                if (!visit[j] && dPrim[j] < min){
                    v = j; min = dPrim[j];
                }
            }
            sum += min;
            visit[v] = true;
            p = sg.adj[v];
            while (p){
                if (!visit[p->v] && p->val < dPrim[p->v]){
                    dPrim[p->v] = p->val;
                }
                p = p->next;
            }
        }
        return sum;
    }
    
    //并查集实现,点集[0,1,2,3,4,...,n-1]
    int parentSet[N];
    int rankSet[N];
    void makeSet(int x)
    {
        parentSet[x] = x;
        rankSet[x] = 0;
    }
    void linkSet(int x, int y)
    {
        if (rankSet[x] > rankSet[y])
            parentSet[y] = x;
        else {
            parentSet[x] = y;
            if (rankSet[x] == rankSet[y])
                ++rankSet[y];
        }
    }
    int findSet(int x)
    {
        vector<int> v;
        while (parentSet[x] != x){
            v.push_back(x);
            x = parentSet[x];
        }
        for (int i = 0; i < v.size(); ++i)
            parentSet[v[i]] = x;
        return x;
    }
    void unionSet(int x, int y)
    {
        linkSet(findSet(x), findSet(y));
    }
    
    //最小生成树 kruskal
    bool kruskalComp(const edge &a, const edge &b){
        return a.val < b.val;
    }
    weightType kruskal(const sparseGraph &sg)
    {
        weightType sum = 0;
        vector<edge> ve;        //取图的所有边,并排序
        edge e;
        link p = NULL;
        for (int i = 0; i < sg.Vcnt; ++i){        
            p = sg.adj[i];
            e.v = i;
            while (p){
                e.w = p->v;
                e.val = p->val;
                ve.push_back(e);
                p = p->next;
            }
        }
        sort(ve.begin(), ve.end(), kruskalComp);    
        for (int i = 0; i < sg.Vcnt; ++i)
            makeSet(i);
        for (int i = 0; i < ve.size(); ++i){
            e = ve[i];
            int x = findSet(e.v);
            int y = findSet(e.w);
            if (x != y){
                unionSet(x, y);
                sum += e.val;
            }
        }
        return sum;
    }
    /*测试数据
    5 6
    1 3 2
    1 4 2
    3 4 3
    1 5 12
    4 2 34
    5 2 24
    
    7 8
    1 3 1
    1 4 1
    3 7 1
    7 4 1
    7 5 1
    6 7 1
    5 2 1
    6 2 1
    */
    int main()
    {
        int v, w, val, n, m;
        cin >> n >> m;
        sparseGraph sg(n,true);
        while (m--){
            cin >> v >> w >> val;
            sg.insert(edge(v-1, w-1, val));
        }
        sg.show();
        cout << endl;
        for (int i = 0; i < sg.Vcnt; ++i){
            spfa(sg, i);
            Dijkstra(sg, i);
            for (int i = 0; i < sg.Vcnt; ++i)
                cout << dSpfa[i] << ' ';
            cout << endl;
            for (int i = 0; i < sg.Vcnt; ++i)
                cout << dDijkstra[i] << ' ';
            cout << endl;
    
            for (int i = 0; i < sg.Vcnt; ++i)
                cout << pSpfa[i] << ' ';
            cout << endl;
            for (int i = 0; i < sg.Vcnt; ++i)
                cout << pDijkstra[i] << ' ';
            cout << endl << endl;
        }
        for (int i = 0; i < sg.Vcnt; ++i)
            cout << prim(sg, i) << endl;
        cout << kruskal(sg) << endl;
    }
  • 相关阅读:
    不用π求坐标夹角大小
    使用LVS实现负载均衡原理及安装配置详解
    从dfs向动态规划过渡
    关于dfs
    [LeetCode] Add Two Numbers
    [LeetCode] Gray Code
    [LeetCode] Single Number
    第四章 深入JSP技术
    蚂蚁破2万亿!身价暴涨2077亿的彭蕾:无论马云的决定是什么,我都让它成为最正确的决定...
    异常场景测试
  • 原文地址:https://www.cnblogs.com/jokoz/p/4763955.html
Copyright © 2011-2022 走看看