【本篇文章主要是通过一个单词计数的案例学习,来加深对storm的基本概念的理解以及基本的开发流程和如何提交并运行一个拓扑】
单词计数拓扑WordCountTopology实现的基本功能就是不停地读入一个个句子,最后输出每个单词和数目并在终端不断的更新结果,拓扑的数据流如下:
- 语句输入Spout: 从数据源不停地读入数据,并生成一个个句子,输出的tuple格式:{"sentence":"hello world"}
- 语句分割Bolt: 将一个句子分割成一个个单词,输出的tuple格式:{"word":"hello"} {"word":"world"}
- 单词计数Bolt: 保存每个单词出现的次数,每接到上游一个tuple后,将对应的单词加1,并将该单词和次数发送到下游去,输出的tuple格式:{"hello":"1"} {"world":"3"}
- 结果上报Bolt: 维护一份所有单词计数表,每接到上游一个tuple后,更新表中的计数数据,并在终端将结果打印出来。
开发步骤:
1.环境
- 操作系统:mac os 10.10.3
- JDK: jdk1.8.0_40
- IDE: intellij idea 15.0.3
- Maven: apache-maven-3.0.3
2.项目搭建
- 在idea新建一个maven项目工程:storm-learning
- 修改pom.xml文件,加入strom核心的依赖,配置slf4j依赖,方便Log输出
<dependencies> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>1.0.2</version> </dependency> </dependencies>
3. Spout和Bolt组件的开发
- SentenceSpout
- SplitSentenceBolt
- WordCountBolt
- ReportBolt
SentenceSpout.java
1 public class SentenceSpout extends BaseRichSpout{ 2 3 private SpoutOutputCollector spoutOutputCollector; 4 5 //为了简单,定义一个静态数据模拟不断的数据流产生 6 private static final String[] sentences={ 7 "The logic for a realtime application is packaged into a Storm topology", 8 "A Storm topology is analogous to a MapReduce job", 9 "One key difference is that a MapReduce job eventually finishes whereas a topology runs forever", 10 " A topology is a graph of spouts and bolts that are connected with stream groupings" 11 }; 12 13 private int index=0; 14 15 //初始化操作 16 public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) { 17 this.spoutOutputCollector = spoutOutputCollector; 18 } 19 20 //核心逻辑 21 public void nextTuple() { 22 spoutOutputCollector.emit(new Values(sentences[index])); 23 ++index; 24 if(index>=sentences.length){ 25 index=0; 26 } 27 } 28 29 //向下游输出 30 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { 31 outputFieldsDeclarer.declare(new Fields("sentences")); 32 } 33 }
SplitSentenceBolt.java
1 public class SplitSentenceBolt extends BaseRichBolt{ 2 3 private OutputCollector outputCollector; 4 5 public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { 6 this.outputCollector = outputCollector; 7 } 8 9 public void execute(Tuple tuple) { 10 String sentence = tuple.getStringByField("sentences"); 11 String[] words = sentence.split(" "); 12 for(String word : words){ 13 outputCollector.emit(new Values(word)); 14 } 15 } 16 17 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { 18 outputFieldsDeclarer.declare(new Fields("word")); 19 } 20 }
WordCountBolt.java
1 public class WordCountBolt extends BaseRichBolt{ 2 3 //保存单词计数 4 private Map<String,Long> wordCount = null; 5 6 private OutputCollector outputCollector; 7 8 public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { 9 this.outputCollector = outputCollector; 10 wordCount = new HashMap<String, Long>(); 11 } 12 13 public void execute(Tuple tuple) { 14 String word = tuple.getStringByField("word"); 15 Long count = wordCount.get(word); 16 if(count == null){ 17 count = 0L; 18 } 19 ++count; 20 wordCount.put(word,count); 21 outputCollector.emit(new Values(word,count)); 22 } 23 24 25 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { 26 outputFieldsDeclarer.declare(new Fields("word","count")); 27 } 28 }
ReportBolt.java
1 public class ReportBolt extends BaseRichBolt { 2 3 private static final Logger log = LoggerFactory.getLogger(ReportBolt.class); 4 5 private Map<String, Long> counts = null; 6 7 public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { 8 counts = new HashMap<String, Long>(); 9 } 10 11 public void execute(Tuple tuple) { 12 String word = tuple.getStringByField("word"); 13 Long count = tuple.getLongByField("count"); 14 counts.put(word, count); 15 //打印更新后的结果 16 printReport(); 17 } 18 19 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { 20 //无下游输出,不需要代码 21 } 22 23 //主要用于将结果打印出来,便于观察 24 private void printReport(){ 25 log.info("--------------------------begin-------------------"); 26 Set<String> words = counts.keySet(); 27 for(String word : words){ 28 log.info("@report-bolt@: " + word + " ---> " + counts.get(word)); 29 } 30 log.info("--------------------------end---------------------"); 31 } 32 }
4.拓扑配置
- WordCountTopology
1 public class WordCountTopology { 2 3 private static final Logger log = LoggerFactory.getLogger(WordCountTopology.class); 4 5 //各个组件名字的唯一标识 6 private final static String SENTENCE_SPOUT_ID = "sentence-spout"; 7 private final static String SPLIT_SENTENCE_BOLT_ID = "split-bolt"; 8 private final static String WORD_COUNT_BOLT_ID = "count-bolt"; 9 private final static String REPORT_BOLT_ID = "report-bolt"; 10 11 //拓扑名称 12 private final static String TOPOLOGY_NAME = "word-count-topology"; 13 14 public static void main(String[] args) { 15 16 log.info(".........begining......."); 17 //各个组件的实例 18 SentenceSpout sentenceSpout = new SentenceSpout(); 19 SplitSentenceBolt splitSentenceBolt = new SplitSentenceBolt(); 20 WordCountBolt wordCountBolt = new WordCountBolt(); 21 ReportBolt reportBolt = new ReportBolt(); 22 23 //构建一个拓扑Builder 24 TopologyBuilder topologyBuilder = new TopologyBuilder(); 25 26 //配置第一个组件sentenceSpout 27 topologyBuilder.setSpout(SENTENCE_SPOUT_ID, sentenceSpout, 2); 28 29 //配置第二个组件splitSentenceBolt,上游为sentenceSpout,tuple分组方式为随机分组shuffleGrouping 30 topologyBuilder.setBolt(SPLIT_SENTENCE_BOLT_ID, splitSentenceBolt).shuffleGrouping(SENTENCE_SPOUT_ID); 31 32 //配置第三个组件wordCountBolt,上游为splitSentenceBolt,tuple分组方式为fieldsGrouping,同一个单词将进入同一个task中(bolt实例) 33 topologyBuilder.setBolt(WORD_COUNT_BOLT_ID, wordCountBolt).fieldsGrouping(SPLIT_SENTENCE_BOLT_ID, new Fields("word")); 34 35 //配置最后一个组件reportBolt,上游为wordCountBolt,tuple分组方式为globalGrouping,即所有的tuple都进入这一个task中 36 topologyBuilder.setBolt(REPORT_BOLT_ID, reportBolt).globalGrouping(WORD_COUNT_BOLT_ID); 37 38 Config config = new Config(); 39 40 //建立本地集群,利用LocalCluster,storm在程序启动时会在本地自动建立一个集群,不需要用户自己再搭建,方便本地开发和debug 41 LocalCluster cluster = new LocalCluster(); 42 43 //创建拓扑实例,并提交到本地集群进行运行 44 cluster.submitTopology(TOPOLOGY_NAME, config, topologyBuilder.createTopology()); 45 } 46 }
5.拓扑执行
- 方法一:通过IDEA执行
在idea中对代码进行编译compile,然后run;
观察控制台输出会发现,storm首先在本地自动建立了运行环境,即启动了zookepeer,接着启动nimbus,supervisor;然后nimbus将提交的topology进行分发到supervisor,supervisor启动woker进程,woker进程里利用Executor来运行topology的组件(spout和bolt);最后在控制台发现不断的输出单词计数的结果。
zookepeer的连接建立
nimbus启动
supervisor启动
worker启动
Executor启动执行
结果输出
- 方法二:通过maven来执行
- 进入到该项目的主目录下:storm-learning
- mvn compile 进行代码编译,保证代码编译通过
- 通过mvn执行程序:
mvn exec:java -Dexec.mainClass="wordCount.WordCountTopology"
- 控制台输出的结果跟方法一一致