zoukankan      html  css  js  c++  java
  • Spark Shuffle机制详细源码解析

    Shuffle过程主要分为Shuffle write和Shuffle read两个阶段,2.0版本之后hash shuffle被删除,只保留sort shuffle,下面结合代码分析:

    1.ShuffleManager

    Spark在初始化SparkEnv的时候,会在create()方法里面初始化ShuffleManager

    // Let the user specify short names for shuffle managers
        val shortShuffleMgrNames = Map(
          "sort" -> classOf[org.apache.spark.shuffle.sort.SortShuffleManager].getName,
          "tungsten-sort" -> classOf[org.apache.spark.shuffle.sort.SortShuffleManager].getName)
        val shuffleMgrName = conf.get(config.SHUFFLE_MANAGER)
        val shuffleMgrClass =
          shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase(Locale.ROOT), shuffleMgrName)
        val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)
    

    这里可以看到包含sort和tungsten-sort两种shuffle,通过反射创建了ShuffleManager,ShuffleManager是一个特质,核心方法有下面几个:

    private[spark] trait ShuffleManager {
    
      /**
       * 注册一个shuffle返回句柄
       */
      def registerShuffle[K, V, C](
          shuffleId: Int,
          dependency: ShuffleDependency[K, V, C]): ShuffleHandle
    
      /** 获取一个Writer根据给定的分区,在executors执行map任务时被调用 */
      def getWriter[K, V](
          handle: ShuffleHandle,
          mapId: Long,
          context: TaskContext,
          metrics: ShuffleWriteMetricsReporter): ShuffleWriter[K, V]
    
      /**
       * 获取一个Reader根据reduce分区的范围,在executors执行reduce任务时被调用
       */
      def getReader[K, C](
          handle: ShuffleHandle,
          startPartition: Int,
          endPartition: Int,
          context: TaskContext,
          metrics: ShuffleReadMetricsReporter): ShuffleReader[K, C]
    	...
    }
    

    2.SortShuffleManager

    SortShuffleManager是ShuffleManager的唯一实现类,对于以上三个方法的实现如下:

    2.1 registerShuffle

    /**
       * Obtains a [[ShuffleHandle]] to pass to tasks.
       */
      override def registerShuffle[K, V, C](
          shuffleId: Int,
          dependency: ShuffleDependency[K, V, C]): ShuffleHandle = {
        // 1.首先检查是否符合BypassMergeSort
        if (SortShuffleWriter.shouldBypassMergeSort(conf, dependency)) {
          // If there are fewer than spark.shuffle.sort.bypassMergeThreshold partitions and we don't
          // need map-side aggregation, then write numPartitions files directly and just concatenate
          // them at the end. This avoids doing serialization and deserialization twice to merge
          // together the spilled files, which would happen with the normal code path. The downside is
          // having multiple files open at a time and thus more memory allocated to buffers.
          new BypassMergeSortShuffleHandle[K, V](
            shuffleId, dependency.asInstanceOf[ShuffleDependency[K, V, V]])
          // 2.否则检查是否能够序列化
        } else if (SortShuffleManager.canUseSerializedShuffle(dependency)) {
          // Otherwise, try to buffer map outputs in a serialized form, since this is more efficient:
          new SerializedShuffleHandle[K, V](
            shuffleId, dependency.asInstanceOf[ShuffleDependency[K, V, V]])
        } else {
          // Otherwise, buffer map outputs in a deserialized form:
          new BaseShuffleHandle(shuffleId, dependency)
        }
      }
    

    1.首先检查是否符合BypassMergeSort,这里需要满足两个条件,首先是当前shuffle依赖中没有map端的聚合操作,其次是分区数要小于spark.shuffle.sort.bypassMergeThreshold的值,默认为200,如果满足这两个条件,会返回BypassMergeSortShuffleHandle,启用bypass merge-sort shuffle机制

    def shouldBypassMergeSort(conf: SparkConf, dep: ShuffleDependency[_, _, _]): Boolean = {
      // We cannot bypass sorting if we need to do map-side aggregation.
      if (dep.mapSideCombine) {
        false
      } else {
        // 默认值为200
        val bypassMergeThreshold: Int = conf.get(config.SHUFFLE_SORT_BYPASS_MERGE_THRESHOLD)
        dep.partitioner.numPartitions <= bypassMergeThreshold
      }
    }
    

    2.如果不满足上面条件,检查是否满足canUseSerializedShuffle()方法,如果满足该方法中的3个条件,则会返回SerializedShuffleHandle,启用tungsten-sort shuffle机制

    def canUseSerializedShuffle(dependency: ShuffleDependency[_, _, _]): Boolean = {
      val shufId = dependency.shuffleId
      val numPartitions = dependency.partitioner.numPartitions
      // 序列化器需要支持Relocation
      if (!dependency.serializer.supportsRelocationOfSerializedObjects) {
        log.debug(s"Can't use serialized shuffle for shuffle $shufId because the serializer, " +
          s"${dependency.serializer.getClass.getName}, does not support object relocation")
        false
        // 不能有map端聚合操作
      } else if (dependency.mapSideCombine) {
        log.debug(s"Can't use serialized shuffle for shuffle $shufId because we need to do " +
          s"map-side aggregation")
        false
        // 分区数不能大于16777215+1
      } else if (numPartitions > MAX_SHUFFLE_OUTPUT_PARTITIONS_FOR_SERIALIZED_MODE) {
        log.debug(s"Can't use serialized shuffle for shuffle $shufId because it has more than " +
          s"$MAX_SHUFFLE_OUTPUT_PARTITIONS_FOR_SERIALIZED_MODE partitions")
        false
      } else {
        log.debug(s"Can use serialized shuffle for shuffle $shufId")
        true
      }
    }
    

    3.如果以上两个条件都不满足的话,会返回BaseShuffleHandle,采用基本sort shuffle机制

    2.2 getReader

    /**
     * Get a reader for a range of reduce partitions (startPartition to endPartition-1, inclusive).
     * Called on executors by reduce tasks.
     */
    override def getReader[K, C](
        handle: ShuffleHandle,
        startPartition: Int,
        endPartition: Int,
        context: TaskContext,
        metrics: ShuffleReadMetricsReporter): ShuffleReader[K, C] = {
      val blocksByAddress = SparkEnv.get.mapOutputTracker.getMapSizesByExecutorId(
        handle.shuffleId, startPartition, endPartition)
      new BlockStoreShuffleReader(
        handle.asInstanceOf[BaseShuffleHandle[K, _, C]], blocksByAddress, context, metrics,
        shouldBatchFetch = canUseBatchFetch(startPartition, endPartition, context))
    }
    

    这里返回BlockStoreShuffleReader

    2.3 getWriter

    /** Get a writer for a given partition. Called on executors by map tasks. */
    override def getWriter[K, V](
        handle: ShuffleHandle,
        mapId: Long,
        context: TaskContext,
        metrics: ShuffleWriteMetricsReporter): ShuffleWriter[K, V] = {
      val mapTaskIds = taskIdMapsForShuffle.computeIfAbsent(
        handle.shuffleId, _ => new OpenHashSet[Long](16))
      mapTaskIds.synchronized { mapTaskIds.add(context.taskAttemptId()) }
      val env = SparkEnv.get
      // 根据handle获取不同ShuffleWrite
      handle match {
        case unsafeShuffleHandle: SerializedShuffleHandle[K @unchecked, V @unchecked] =>
          new UnsafeShuffleWriter(
            env.blockManager,
            context.taskMemoryManager(),
            unsafeShuffleHandle,
            mapId,
            context,
            env.conf,
            metrics,
            shuffleExecutorComponents)
        case bypassMergeSortHandle: BypassMergeSortShuffleHandle[K @unchecked, V @unchecked] =>
          new BypassMergeSortShuffleWriter(
            env.blockManager,
            bypassMergeSortHandle,
            mapId,
            env.conf,
            metrics,
            shuffleExecutorComponents)
        case other: BaseShuffleHandle[K @unchecked, V @unchecked, _] =>
          new SortShuffleWriter(
            shuffleBlockResolver, other, mapId, context, shuffleExecutorComponents)
      }
    }
    

    这里会根据handle获取不同ShuffleWrite,如果是SerializedShuffleHandle,使用UnsafeShuffleWriter,如果是BypassMergeSortShuffleHandle,采用BypassMergeSortShuffleWriter,否则使用SortShuffleWriter

    3.三种Writer的实现

    如上文所说,当开启bypass机制后,会使用BypassMergeSortShuffleWriter,如果serializer支持relocation并且map端没有聚合同时分区数目不大于16777215+1三个条件都满足,使用UnsafeShuffleWriter,否则使用SortShuffleWriter

    3.1 BypassMergeSortShuffleWriter

    BypassMergeSortShuffleWriter继承ShuffleWriter,用java实现,会将map端的多个输出文件合并为一个文件,同时生成一个索引文件,索引记录到每个分区的初始地址,write()方法如下:

    @Override
    public void write(Iterator<Product2<K, V>> records) throws IOException {
      assert (partitionWriters == null);
      // 新建一个ShuffleMapOutputWriter
      ShuffleMapOutputWriter mapOutputWriter = shuffleExecutorComponents
      .createMapOutputWriter(shuffleId, mapId, numPartitions);
      try {
        // 如果没有数据的话
        if (!records.hasNext()) {
          // 返回所有分区的写入长度
          partitionLengths = mapOutputWriter.commitAllPartitions();
          // 更新mapStatus
          mapStatus = MapStatus$.MODULE$.apply(
            blockManager.shuffleServerId(), partitionLengths, mapId);
          return;
        }
        final SerializerInstance serInstance = serializer.newInstance();
        final long openStartTime = System.nanoTime();
        // 创建和分区数相等的DiskBlockObjectWriter FileSegment
        partitionWriters = new DiskBlockObjectWriter[numPartitions];
        partitionWriterSegments = new FileSegment[numPartitions];
        // 对于每个分区
        for (int i = 0; i < numPartitions; i++) {
          // 创建一个临时的block
          final Tuple2<TempShuffleBlockId, File> tempShuffleBlockIdPlusFile =
          blockManager.diskBlockManager().createTempShuffleBlock();
          // 获取temp block的file和id
          final File file = tempShuffleBlockIdPlusFile._2();
          final BlockId blockId = tempShuffleBlockIdPlusFile._1();
          // 对于每个分区,创建一个DiskBlockObjectWriter
          partitionWriters[i] =
          blockManager.getDiskWriter(blockId, file, serInstance, fileBufferSize, writeMetrics);
        }
        // Creating the file to write to and creating a disk writer both involve interacting with
        // the disk, and can take a long time in aggregate when we open many files, so should be
        // included in the shuffle write time.
        // 创建文件和写入文件都需要大量时间,也需要包含在shuffle写入时间里面
        writeMetrics.incWriteTime(System.nanoTime() - openStartTime);
    
        // 如果有数据的话
        while (records.hasNext()) {
          final Product2<K, V> record = records.next();
          final K key = record._1();
          // 对于每条数据按key写入相应分区对应的文件
          partitionWriters[partitioner.getPartition(key)].write(key, record._2());
        }
    
        for (int i = 0; i < numPartitions; i++) {
          try (DiskBlockObjectWriter writer = partitionWriters[i]) {
            // 提交
            partitionWriterSegments[i] = writer.commitAndGet();
          }
        }
    
        // 将所有分区文件合并成一个文件
        partitionLengths = writePartitionedData(mapOutputWriter);
        // 更新mapStatus
        mapStatus = MapStatus$.MODULE$.apply(
          blockManager.shuffleServerId(), partitionLengths, mapId);
      } catch (Exception e) {
        try {
          mapOutputWriter.abort(e);
        } catch (Exception e2) {
          logger.error("Failed to abort the writer after failing to write map output.", e2);
          e.addSuppressed(e2);
        }
        throw e;
      }
    }
    

    合并文件的方法writePartitionedData()如下,默认采用零拷贝的方式来合并文件:

    private long[] writePartitionedData(ShuffleMapOutputWriter mapOutputWriter) throws IOException {
      // Track location of the partition starts in the output file
      if (partitionWriters != null) {
        // 开始时间
        final long writeStartTime = System.nanoTime();
        try {
          for (int i = 0; i < numPartitions; i++) {
            // 获取每个文件
            final File file = partitionWriterSegments[i].file();
            ShufflePartitionWriter writer = mapOutputWriter.getPartitionWriter(i);
            if (file.exists()) {
              // 采取零拷贝方式
              if (transferToEnabled) {
                // Using WritableByteChannelWrapper to make resource closing consistent between
                // this implementation and UnsafeShuffleWriter.
                Optional<WritableByteChannelWrapper> maybeOutputChannel = writer.openChannelWrapper();
                // 在这里会调用Utils.copyFileStreamNIO方法,最终调用FileChannel.transferTo方法拷贝文件
                if (maybeOutputChannel.isPresent()) {
                  writePartitionedDataWithChannel(file, maybeOutputChannel.get());
                } else {
                  writePartitionedDataWithStream(file, writer);
                }
              } else {
                // 否则采取流的方式拷贝
                writePartitionedDataWithStream(file, writer);
              }
              if (!file.delete()) {
                logger.error("Unable to delete file for partition {}", i);
              }
            }
          }
        } finally {
          writeMetrics.incWriteTime(System.nanoTime() - writeStartTime);
        }
        partitionWriters = null;
      }
      return mapOutputWriter.commitAllPartitions();
    }
    

    3.2 UnsafeShuffleWriter

    UnsafeShuffleWriter也是继承ShuffleWriter,用java实现,write方法如下:

    @Override
    public void write(scala.collection.Iterator<Product2<K, V>> records) throws IOException {
      // Keep track of success so we know if we encountered an exception
      // We do this rather than a standard try/catch/re-throw to handle
      // generic throwables.
      // 跟踪异常
      boolean success = false;
      try {
        while (records.hasNext()) {
          // 将数据插入ShuffleExternalSorter进行外部排序
          insertRecordIntoSorter(records.next());
        }
        // 合并并输出文件
        closeAndWriteOutput();
        success = true;
      } finally {
        if (sorter != null) {
          try {
            sorter.cleanupResources();
          } catch (Exception e) {
            // Only throw this error if we won't be masking another
            // error.
            if (success) {
              throw e;
            } else {
              logger.error("In addition to a failure during writing, we failed during " +
                           "cleanup.", e);
            }
          }
        }
      }
    }
    

    这里主要有两个方法:

    3.2.1 insertRecordIntoSorter()

    @VisibleForTesting
    void insertRecordIntoSorter(Product2<K, V> record) throws IOException {
      assert(sorter != null);
      // 获取key和分区
      final K key = record._1();
      final int partitionId = partitioner.getPartition(key);
      // 重置缓冲区
      serBuffer.reset();
      // 将key和value写入缓冲区
      serOutputStream.writeKey(key, OBJECT_CLASS_TAG);
      serOutputStream.writeValue(record._2(), OBJECT_CLASS_TAG);
      serOutputStream.flush();
    
      // 获取序列化数据大小
      final int serializedRecordSize = serBuffer.size();
      assert (serializedRecordSize > 0);
    
      // 将序列化后的数据插入ShuffleExternalSorter处理
      sorter.insertRecord(
        serBuffer.getBuf(), Platform.BYTE_ARRAY_OFFSET, serializedRecordSize, partitionId);
    }
    

    该方法会将数据进行序列化,并且将序列化后的数据通过insertRecord()方法插入外部排序器中,insertRecord()方法如下:

    public void insertRecord(Object recordBase, long recordOffset, int length, int partitionId)
      throws IOException {
    
      // for tests
      assert(inMemSorter != null);
      // 如果数据条数超过溢写阈值,直接溢写磁盘
      if (inMemSorter.numRecords() >= numElementsForSpillThreshold) {
        logger.info("Spilling data because number of spilledRecords crossed the threshold " +
          numElementsForSpillThreshold);
        spill();
      }
    
      // Checks whether there is enough space to insert an additional record in to the sort pointer
      // array and grows the array if additional space is required. If the required space cannot be
      // obtained, then the in-memory data will be spilled to disk.
      // 检查是否有足够的空间插入额外的记录到排序指针数组中,如果需要额外的空间对数组进行扩容,如果空间不够,内存中的数据将会被溢写到磁盘上
      growPointerArrayIfNecessary();
      final int uaoSize = UnsafeAlignedOffset.getUaoSize();
      // Need 4 or 8 bytes to store the record length.
      // 需要额外的4或8个字节存储数据长度
      final int required = length + uaoSize;
      // 如果需要更多的内存,会想TaskMemoryManager申请新的page
      acquireNewPageIfNecessary(required);
    
      assert(currentPage != null);
      final Object base = currentPage.getBaseObject();
      //Given a memory page and offset within that page, encode this address into a 64-bit long.
      //This address will remain valid as long as the corresponding page has not been freed.
      // 通过给定的内存页和偏移量,将当前数据的逻辑地址编码成一个long型
      final long recordAddress = taskMemoryManager.encodePageNumberAndOffset(currentPage, pageCursor);
      // 写长度值
      UnsafeAlignedOffset.putSize(base, pageCursor, length);
      // 移动指针
      pageCursor += uaoSize;
      // 写数据
      Platform.copyMemory(recordBase, recordOffset, base, pageCursor, length);
      // 移动指针
      pageCursor += length;
      // 将编码的逻辑地址和分区id传给ShuffleInMemorySorter进行排序
      inMemSorter.insertRecord(recordAddress, partitionId);
    }
    

    在这里对于数据的缓存和溢写不借助于其他高级数据结构,而是直接操作内存空间

    growPointerArrayIfNecessary()方法如下:

    /**
     * Checks whether there is enough space to insert an additional record in to the sort pointer
     * array and grows the array if additional space is required. If the required space cannot be
     * obtained, then the in-memory data will be spilled to disk.
     */
    private void growPointerArrayIfNecessary() throws IOException {
      assert(inMemSorter != null);
      // 如果没有空间容纳新的数据
      if (!inMemSorter.hasSpaceForAnotherRecord()) {
        // 获取当前内存使用量
        long used = inMemSorter.getMemoryUsage();
        LongArray array;
        try {
          // could trigger spilling
          // 分配给缓存原来两倍的容量
          array = allocateArray(used / 8 * 2);
        } catch (TooLargePageException e) {
          // The pointer array is too big to fix in a single page, spill.
          // 如果超出了一页的大小,直接溢写,溢写方法见后面
          // 一页的大小为128M,在PackedRecordPointer类中
          // static final int MAXIMUM_PAGE_SIZE_BYTES = 1 << 27;  // 128 megabytes
          spill();
          return;
        } catch (SparkOutOfMemoryError e) {
          // should have trigger spilling
          if (!inMemSorter.hasSpaceForAnotherRecord()) {
            logger.error("Unable to grow the pointer array");
            throw e;
          }
          return;
        }
        // check if spilling is triggered or not
        if (inMemSorter.hasSpaceForAnotherRecord()) {
          // 如果有了剩余空间,则表明没必要扩容,释放分配的空间
          freeArray(array);
        } else {
          // 否则把原来的数组复制到新的数组
          inMemSorter.expandPointerArray(array);
        }
      }
    }
    

    spill()方法如下:

    @Override
    public long spill(long size, MemoryConsumer trigger) throws IOException {
      if (trigger != this || inMemSorter == null || inMemSorter.numRecords() == 0) {
        return 0L;
      }
    
      logger.info("Thread {} spilling sort data of {} to disk ({} {} so far)",
        Thread.currentThread().getId(),
        Utils.bytesToString(getMemoryUsage()),
        spills.size(),
        spills.size() > 1 ? " times" : " time");
    
      // Sorts the in-memory records and writes the sorted records to an on-disk file.
      // This method does not free the sort data structures.
      // 对内存中的数据进行排序并且将有序记录写到一个磁盘文件中,这个方法不会释放排序的数据结构
      writeSortedFile(false);
      final long spillSize = freeMemory();
      // 重置ShuffleInMemorySorter
      inMemSorter.reset();
      // Reset the in-memory sorter's pointer array only after freeing up the memory pages holding the
      // records. Otherwise, if the task is over allocated memory, then without freeing the memory
      // pages, we might not be able to get memory for the pointer array.
      taskContext.taskMetrics().incMemoryBytesSpilled(spillSize);
      return spillSize;
    }
    

    writeSortedFile()方法:

    private void writeSortedFile(boolean isLastFile) {
    
      // This call performs the actual sort.
      // 返回一个排序好的迭代器
      final ShuffleInMemorySorter.ShuffleSorterIterator sortedRecords =
        inMemSorter.getSortedIterator();
    
      // If there are no sorted records, so we don't need to create an empty spill file.
      if (!sortedRecords.hasNext()) {
        return;
      }
    
      final ShuffleWriteMetricsReporter writeMetricsToUse;
    
      // 如果为true,则为输出文件,否则为溢写文件
      if (isLastFile) {
        // We're writing the final non-spill file, so we _do_ want to count this as shuffle bytes.
        writeMetricsToUse = writeMetrics;
      } else {
        // We're spilling, so bytes written should be counted towards spill rather than write.
        // Create a dummy WriteMetrics object to absorb these metrics, since we don't want to count
        // them towards shuffle bytes written.
        writeMetricsToUse = new ShuffleWriteMetrics();
      }
    
      // Small writes to DiskBlockObjectWriter will be fairly inefficient. Since there doesn't seem to
      // be an API to directly transfer bytes from managed memory to the disk writer, we buffer
      // data through a byte array. This array does not need to be large enough to hold a single
      // record;
      // 创建一个字节缓冲数组,大小为1m
      final byte[] writeBuffer = new byte[diskWriteBufferSize];
    
      // Because this output will be read during shuffle, its compression codec must be controlled by
      // spark.shuffle.compress instead of spark.shuffle.spill.compress, so we need to use
      // createTempShuffleBlock here; see SPARK-3426 for more details.
      // 创建一个临时的shuffle block
      final Tuple2<TempShuffleBlockId, File> spilledFileInfo =
        blockManager.diskBlockManager().createTempShuffleBlock();
      // 获取文件和id
      final File file = spilledFileInfo._2();
      final TempShuffleBlockId blockId = spilledFileInfo._1();
      final SpillInfo spillInfo = new SpillInfo(numPartitions, file, blockId);
    
      // Unfortunately, we need a serializer instance in order to construct a DiskBlockObjectWriter.
      // Our write path doesn't actually use this serializer (since we end up calling the `write()`
      // OutputStream methods), but DiskBlockObjectWriter still calls some methods on it. To work
      // around this, we pass a dummy no-op serializer.
      // 不做任何转换的序列化器,因为需要一个实例来构造DiskBlockObjectWriter
      final SerializerInstance ser = DummySerializerInstance.INSTANCE;
    
      int currentPartition = -1;
      final FileSegment committedSegment;
      try (DiskBlockObjectWriter writer =
          blockManager.getDiskWriter(blockId, file, ser, fileBufferSizeBytes, writeMetricsToUse)) {
    
        final int uaoSize = UnsafeAlignedOffset.getUaoSize();
        // 遍历
        while (sortedRecords.hasNext()) {
          sortedRecords.loadNext();
          final int partition = sortedRecords.packedRecordPointer.getPartitionId();
          assert (partition >= currentPartition);
          if (partition != currentPartition) {
            // Switch to the new partition
            // 如果切换到了新的分区,提交当前分区,并且记录当前分区大小
            if (currentPartition != -1) {
              final FileSegment fileSegment = writer.commitAndGet();
              spillInfo.partitionLengths[currentPartition] = fileSegment.length();
            }
            // 然后切换到下一个分区
            currentPartition = partition;
          }
    
          // 获取指针,通过指针获取页号和偏移量
          final long recordPointer = sortedRecords.packedRecordPointer.getRecordPointer();
          final Object recordPage = taskMemoryManager.getPage(recordPointer);
          final long recordOffsetInPage = taskMemoryManager.getOffsetInPage(recordPointer);
          // 获取剩余数据
          int dataRemaining = UnsafeAlignedOffset.getSize(recordPage, recordOffsetInPage);
          // 跳过数据前面存储的长度
          long recordReadPosition = recordOffsetInPage + uaoSize; // skip over record length
          while (dataRemaining > 0) {
            final int toTransfer = Math.min(diskWriteBufferSize, dataRemaining);
            // 将数据拷贝到缓冲数组中
            Platform.copyMemory(
              recordPage, recordReadPosition, writeBuffer, Platform.BYTE_ARRAY_OFFSET, toTransfer);
            // 从缓冲数组中转入DiskBlockObjectWriter
            writer.write(writeBuffer, 0, toTransfer);
            // 更新位置
            recordReadPosition += toTransfer;
            // 更新剩余数据
            dataRemaining -= toTransfer;
          }
          writer.recordWritten();
        }
    
        // 提交
        committedSegment = writer.commitAndGet();
      }
      // If `writeSortedFile()` was called from `closeAndGetSpills()` and no records were inserted,
      // then the file might be empty. Note that it might be better to avoid calling
      // writeSortedFile() in that case.
      // 记录溢写文件的列表
      if (currentPartition != -1) {
        spillInfo.partitionLengths[currentPartition] = committedSegment.length();
        spills.add(spillInfo);
      }
    
      // 如果是溢写文件,更新溢写的指标
      if (!isLastFile) {  
        writeMetrics.incRecordsWritten(
          ((ShuffleWriteMetrics)writeMetricsToUse).recordsWritten());
        taskContext.taskMetrics().incDiskBytesSpilled(
          ((ShuffleWriteMetrics)writeMetricsToUse).bytesWritten());
      }
    }
    

    encodePageNumberAndOffset()方法如下:

    public long encodePageNumberAndOffset(MemoryBlock page, long offsetInPage) {
      // 如果开启了堆外内存,偏移量为绝对地址,可能需要64位进行编码,由于页大小限制,将其减去当前页的基地址,变为相对地址
      if (tungstenMemoryMode == MemoryMode.OFF_HEAP) {
        // In off-heap mode, an offset is an absolute address that may require a full 64 bits to
        // encode. Due to our page size limitation, though, we can convert this into an offset that's
        // relative to the page's base offset; this relative offset will fit in 51 bits.
        offsetInPage -= page.getBaseOffset();
      }
      return encodePageNumberAndOffset(page.pageNumber, offsetInPage);
    }
    
    @VisibleForTesting
    public static long encodePageNumberAndOffset(int pageNumber, long offsetInPage) {
      assert (pageNumber >= 0) : "encodePageNumberAndOffset called with invalid page";
      // 高13位为页号,低51位为偏移量
      // 页号左移51位,再拼偏移量和上一个低51位都为1的掩码0x7FFFFFFFFFFFFL
      return (((long) pageNumber) << OFFSET_BITS) | (offsetInPage & MASK_LONG_LOWER_51_BITS);
    }
    

    ShuffleInMemorySorter的insertRecord()方法如下:

    public void insertRecord(long recordPointer, int partitionId) {
      if (!hasSpaceForAnotherRecord()) {
        throw new IllegalStateException("There is no space for new record");
      }
      array.set(pos, PackedRecordPointer.packPointer(recordPointer, partitionId));
      pos++;
    }
    

    PackedRecordPointer.packPointer()方法:

    public static long packPointer(long recordPointer, int partitionId) {
      assert (partitionId <= MAXIMUM_PARTITION_ID);
      // Note that without word alignment we can address 2^27 bytes = 128 megabytes per page.
      // Also note that this relies on some internals of how TaskMemoryManager encodes its addresses.
      // 将页号右移24位,和低27位拼在一起,这样逻辑地址被压缩成40位
      final long pageNumber = (recordPointer & MASK_LONG_UPPER_13_BITS) >>> 24;
      final long compressedAddress = pageNumber | (recordPointer & MASK_LONG_LOWER_27_BITS);
      // 将分区号放在高24位上
      return (((long) partitionId) << 40) | compressedAddress;
    }
    

    getSortedIterator()方法:

    public ShuffleSorterIterator getSortedIterator() {
      int offset = 0;
      // 使用基数排序对内存分区ID进行排序。基数排序要快得多,但是在添加指针时需要额外的内存作为保留内存
      if (useRadixSort) {
        offset = RadixSort.sort(
          array, pos,
          PackedRecordPointer.PARTITION_ID_START_BYTE_INDEX,
          PackedRecordPointer.PARTITION_ID_END_BYTE_INDEX, false, false);
        // 否则采用timSort排序
      } else {
        MemoryBlock unused = new MemoryBlock(
          array.getBaseObject(),
          array.getBaseOffset() + pos * 8L,
          (array.size() - pos) * 8L);
        LongArray buffer = new LongArray(unused);
        Sorter<PackedRecordPointer, LongArray> sorter =
          new Sorter<>(new ShuffleSortDataFormat(buffer));
    
        sorter.sort(array, 0, pos, SORT_COMPARATOR);
      }
      return new ShuffleSorterIterator(pos, array, offset);
    }
    

    3.2.2 closeAndWriteOutput()

    @VisibleForTesting
    void closeAndWriteOutput() throws IOException {
      assert(sorter != null);
      updatePeakMemoryUsed();
      serBuffer = null;
      serOutputStream = null;
      // 获取溢写文件
      final SpillInfo[] spills = sorter.closeAndGetSpills();
      sorter = null;
      final long[] partitionLengths;
      try {
        // 合并溢写文件
        partitionLengths = mergeSpills(spills);
      } finally {
        // 删除溢写文件
        for (SpillInfo spill : spills) {
          if (spill.file.exists() && !spill.file.delete()) {
            logger.error("Error while deleting spill file {}", spill.file.getPath());
          }
        }
      }
      // 更新mapstatus
      mapStatus = MapStatus$.MODULE$.apply(
        blockManager.shuffleServerId(), partitionLengths, mapId);
    }
    

    mergeSpills()方法:

    private long[] mergeSpills(SpillInfo[] spills) throws IOException {
      long[] partitionLengths;
      // 如果没有溢写文件,创建空的
      if (spills.length == 0) {
        final ShuffleMapOutputWriter mapWriter = shuffleExecutorComponents
            .createMapOutputWriter(shuffleId, mapId, partitioner.numPartitions());
        return mapWriter.commitAllPartitions();
        // 如果只有一个溢写文件,将它合并输出
      } else if (spills.length == 1) {
        Optional<SingleSpillShuffleMapOutputWriter> maybeSingleFileWriter =
            shuffleExecutorComponents.createSingleFileMapOutputWriter(shuffleId, mapId);
        if (maybeSingleFileWriter.isPresent()) {
          // Here, we don't need to perform any metrics updates because the bytes written to this
          // output file would have already been counted as shuffle bytes written.
          partitionLengths = spills[0].partitionLengths;
          maybeSingleFileWriter.get().transferMapSpillFile(spills[0].file, partitionLengths);
        } else {
          partitionLengths = mergeSpillsUsingStandardWriter(spills);
        }
        // 如果有多个,合并输出,合并的时候有NIO和BIO两种方式
      } else {
        partitionLengths = mergeSpillsUsingStandardWriter(spills);
      }
      return partitionLengths;
    }
    

    3.3 SortShuffleWriter

    SortShuffleWriter会使用PartitionedAppendOnlyMap或PartitionedPariBuffer在内存中进行排序,如果超过内存限制,会溢写到文件中,在全局输出有序文件的时候,对之前的所有输出文件和当前内存中的数据进行全局归并排序,对key相同的元素会使用定义的function进行聚合,入口为write()方法:

    override def write(records: Iterator[Product2[K, V]]): Unit = {
      // 创建一个外部排序器,如果map端有预聚合,就传入aggregator和keyOrdering,否则不需要传入
      sorter = if (dep.mapSideCombine) {
        new ExternalSorter[K, V, C](
          context, dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)
      } else {
        // In this case we pass neither an aggregator nor an ordering to the sorter, because we don't
        // care whether the keys get sorted in each partition; that will be done on the reduce side
        // if the operation being run is sortByKey.
        new ExternalSorter[K, V, V](
          context, aggregator = None, Some(dep.partitioner), ordering = None, dep.serializer)
      }
      // 将数据放入ExternalSorter进行排序
      sorter.insertAll(records)
    
      // Don't bother including the time to open the merged output file in the shuffle write time,
      // because it just opens a single file, so is typically too fast to measure accurately
      // (see SPARK-3570).
      // 创建一个输出Wrtier
      val mapOutputWriter = shuffleExecutorComponents.createMapOutputWriter(
        dep.shuffleId, mapId, dep.partitioner.numPartitions)
      // 将外部排序的数据写入Writer
      sorter.writePartitionedMapOutput(dep.shuffleId, mapId, mapOutputWriter)
      val partitionLengths = mapOutputWriter.commitAllPartitions()
      // 更新mapstatus
      mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths, mapId)
    }
    

    insertAll()方法:

    def insertAll(records: Iterator[Product2[K, V]]): Unit = {
      // TODO: stop combining if we find that the reduction factor isn't high
      val shouldCombine = aggregator.isDefined
    
      // 是否需要map端聚合
      if (shouldCombine) {
        // Combine values in-memory first using our AppendOnlyMap
        // 使用AppendOnlyMap在内存中聚合values
        // 获取mergeValue()函数,将新值合并到当前聚合结果中
        val mergeValue = aggregator.get.mergeValue
        // 获取createCombiner()函数,创建聚合初始值
        val createCombiner = aggregator.get.createCombiner
        var kv: Product2[K, V] = null
        // 如果一个key当前有聚合值,则合并,如果没有创建初始值
        val update = (hadValue: Boolean, oldValue: C) => {
          if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)
        }
        // 遍历
        while (records.hasNext) {
          // 增加读取记录数
          addElementsRead()
          kv = records.next()
          // map为PartitionedAppendOnlyMap,将分区和key作为key,聚合值作为value
          map.changeValue((getPartition(kv._1), kv._1), update)
          // 是否需要溢写到磁盘
          maybeSpillCollection(usingMap = true)
        }
        // 如果不需要map端聚合
      } else {
        // Stick values into our buffer
        while (records.hasNext) {
          addElementsRead()
          val kv = records.next()
          // buffer为PartitionedPairBuffer,将分区和key加进去
          buffer.insert(getPartition(kv._1), kv._1, kv._2.asInstanceOf[C])
          // 是否需要溢写到磁盘
          maybeSpillCollection(usingMap = false)
        }
      }
    }
    

    该方法主要是判断在插入数据时,是否需要在map端进行预聚合,分别采用两种数据结构来保存

    maybeSpillCollection()方法里面会调用maybeSpill()方法检查是否需要溢写,如果发生溢写,重新构造一个map或者buffer结构从头开始缓存,如下:

    private def maybeSpillCollection(usingMap: Boolean): Unit = {
      var estimatedSize = 0L
      if (usingMap) {
        estimatedSize = map.estimateSize()
        // 判断是否需要溢写
        if (maybeSpill(map, estimatedSize)) {
          map = new PartitionedAppendOnlyMap[K, C]
        }
      } else {
        estimatedSize = buffer.estimateSize()
        // 判断是否需要溢写
        if (maybeSpill(buffer, estimatedSize)) {
          buffer = new PartitionedPairBuffer[K, C]
        }
      }
    
      if (estimatedSize > _peakMemoryUsedBytes) {
        _peakMemoryUsedBytes = estimatedSize
      }
    }
    
    
      protected def maybeSpill(collection: C, currentMemory: Long): Boolean = {
        var shouldSpill = false
        // 如果读取的记录数是32的倍数,并且预估map或者buffer内存占用大于默认的5m阈值
        if (elementsRead % 32 == 0 && currentMemory >= myMemoryThreshold) {
          // Claim up to double our current memory from the shuffle memory pool
          // 尝试申请2*currentMemory-5m的内存
          val amountToRequest = 2 * currentMemory - myMemoryThreshold
          val granted = acquireMemory(amountToRequest)
          // 更新阈值
          myMemoryThreshold += granted
          // If we were granted too little memory to grow further (either tryToAcquire returned 0,
          // or we already had more memory than myMemoryThreshold), spill the current collection
          // 判断,如果还是不够,确定溢写
          shouldSpill = currentMemory >= myMemoryThreshold
        }
        // 如果shouldSpill为false,但是读取的记录数大于Integer.MAX_VALUE,也是需要溢写
        shouldSpill = shouldSpill || _elementsRead > numElementsForceSpillThreshold
        // Actually spill
        if (shouldSpill) {
          // 溢写次数+1
          _spillCount += 1
          logSpillage(currentMemory)
          // 溢写缓存的集合
          spill(collection)
          _elementsRead = 0
          _memoryBytesSpilled += currentMemory
          // 释放内存
          releaseMemory()
        }
        shouldSpill
      }
    

    maybeSpill()方法里面会调用spill()进行溢写,如下:

      override protected[this] def spill(collection: WritablePartitionedPairCollection[K, C]): Unit = {
        // 根据给定的比较器进行排序,返回排序结果的迭代器
        val inMemoryIterator = collection.destructiveSortedWritablePartitionedIterator(comparator)
        // 将迭代器中的数据溢写到磁盘文件中
        val spillFile = spillMemoryIteratorToDisk(inMemoryIterator)
        // ArrayBuffer记录所有溢写的文件
        spills += spillFile
      }
    

    spillMemoryIteratorToDisk()方法如下:

    private[this] def spillMemoryIteratorToDisk(inMemoryIterator: WritablePartitionedIterator)
        : SpilledFile = {
      // Because these files may be read during shuffle, their compression must be controlled by
      // spark.shuffle.compress instead of spark.shuffle.spill.compress, so we need to use
      // createTempShuffleBlock here; see SPARK-3426 for more context.
      // 创建一个临时块
      val (blockId, file) = diskBlockManager.createTempShuffleBlock()
    
      // These variables are reset after each flush
      var objectsWritten: Long = 0
      val spillMetrics: ShuffleWriteMetrics = new ShuffleWriteMetrics
      // 创建溢写文件的DiskBlockObjectWriter
      val writer: DiskBlockObjectWriter =
        blockManager.getDiskWriter(blockId, file, serInstance, fileBufferSize, spillMetrics)
    
      // List of batch sizes (bytes) in the order they are written to disk
      // 记录写入批次大小
      val batchSizes = new ArrayBuffer[Long]
    
      // How many elements we have in each partition
      // 记录每个分区条数
      val elementsPerPartition = new Array[Long](numPartitions)
    
      // Flush the disk writer's contents to disk, and update relevant variables.
      // The writer is committed at the end of this process.
      // 将内存中的数据按批次刷写到磁盘中
      def flush(): Unit = {
        val segment = writer.commitAndGet()
        batchSizes += segment.length
        _diskBytesSpilled += segment.length
        objectsWritten = 0
      }
    
      var success = false
      try {
        // 遍历map或者buffer中的记录
        while (inMemoryIterator.hasNext) {
          val partitionId = inMemoryIterator.nextPartition()
          require(partitionId >= 0 && partitionId < numPartitions,
            s"partition Id: ${partitionId} should be in the range [0, ${numPartitions})")
          // 写入并更新计数值
          inMemoryIterator.writeNext(writer)
          elementsPerPartition(partitionId) += 1
          objectsWritten += 1
    
          // 写入条数达到10000条时,将这批刷写到磁盘
          if (objectsWritten == serializerBatchSize) {
            flush()
          }
        }
        // 遍历完以后,将剩余的刷写到磁盘
        if (objectsWritten > 0) {
          flush()
        } else {
          writer.revertPartialWritesAndClose()
        }
        success = true
      } finally {
        if (success) {
          writer.close()
        } else {
          // This code path only happens if an exception was thrown above before we set success;
          // close our stuff and let the exception be thrown further
          writer.revertPartialWritesAndClose()
          if (file.exists()) {
            if (!file.delete()) {
              logWarning(s"Error deleting ${file}")
            }
          }
        }
      }
    
      // 返回溢写文件
      SpilledFile(file, blockId, batchSizes.toArray, elementsPerPartition)
    }
    

    接下来就是排序合并操作,调用ExternalSorter.writePartitionedMapOutput()方法:

    def writePartitionedMapOutput(
        shuffleId: Int,
        mapId: Long,
        mapOutputWriter: ShuffleMapOutputWriter): Unit = {
      var nextPartitionId = 0
      // 如果没有发生溢写
      if (spills.isEmpty) {
        // Case where we only have in-memory data
        val collection = if (aggregator.isDefined) map else buffer
        // 根据指定的比较器进行排序
        val it = collection.destructiveSortedWritablePartitionedIterator(comparator)
        while (it.hasNext()) {
          val partitionId = it.nextPartition()
          var partitionWriter: ShufflePartitionWriter = null
          var partitionPairsWriter: ShufflePartitionPairsWriter = null
          TryUtils.tryWithSafeFinally {
            partitionWriter = mapOutputWriter.getPartitionWriter(partitionId)
            val blockId = ShuffleBlockId(shuffleId, mapId, partitionId)
            partitionPairsWriter = new ShufflePartitionPairsWriter(
              partitionWriter,
              serializerManager,
              serInstance,
              blockId,
              context.taskMetrics().shuffleWriteMetrics)
            // 将分区内的数据依次取出
            while (it.hasNext && it.nextPartition() == partitionId) {
              it.writeNext(partitionPairsWriter)
            }
          } {
            if (partitionPairsWriter != null) {
              partitionPairsWriter.close()
            }
          }
          nextPartitionId = partitionId + 1
        }
        // 如果发生溢写,将溢写文件和缓存数据进行归并排序,排序完成后按照分区依次写入ShufflePartitionPairsWriter
      } else {
        // We must perform merge-sort; get an iterator by partition and write everything directly.
        // 这里会进行归并排序
        for ((id, elements) <- this.partitionedIterator) {
          val blockId = ShuffleBlockId(shuffleId, mapId, id)
          var partitionWriter: ShufflePartitionWriter = null
          var partitionPairsWriter: ShufflePartitionPairsWriter = null
          TryUtils.tryWithSafeFinally {
            partitionWriter = mapOutputWriter.getPartitionWriter(id)
            partitionPairsWriter = new ShufflePartitionPairsWriter(
              partitionWriter,
              serializerManager,
              serInstance,
              blockId,
              context.taskMetrics().shuffleWriteMetrics)
            if (elements.hasNext) {
              for (elem <- elements) {
                partitionPairsWriter.write(elem._1, elem._2)
              }
            }
          } {
            if (partitionPairsWriter != null) {
              partitionPairsWriter.close()
            }
          }
          nextPartitionId = id + 1
        }
      }
    
      context.taskMetrics().incMemoryBytesSpilled(memoryBytesSpilled)
      context.taskMetrics().incDiskBytesSpilled(diskBytesSpilled)
      context.taskMetrics().incPeakExecutionMemory(peakMemoryUsedBytes)
    }
    

    partitionedIterator()方法:

    def partitionedIterator: Iterator[(Int, Iterator[Product2[K, C]])] = {
      val usingMap = aggregator.isDefined
      val collection: WritablePartitionedPairCollection[K, C] = if (usingMap) map else buffer
      if (spills.isEmpty) {
        // Special case: if we have only in-memory data, we don't need to merge streams, and perhaps
        // we don't even need to sort by anything other than partition ID
        // 如果没有溢写,并且没有排序,只按照分区id排序
        if (ordering.isEmpty) {
          // The user hasn't requested sorted keys, so only sort by partition ID, not key
          groupByPartition(destructiveIterator(collection.partitionedDestructiveSortedIterator(None)))
          // 如果没有溢写但是排序,先按照分区id排序,再按key排序
        } else {
          // We do need to sort by both partition ID and key
          groupByPartition(destructiveIterator(
            collection.partitionedDestructiveSortedIterator(Some(keyComparator))))
        }
      } else {
        // Merge spilled and in-memory data
        // 如果有溢写,就将溢写文件和内存中的数据归并排序
        merge(spills, destructiveIterator(
          collection.partitionedDestructiveSortedIterator(comparator)))
      }
    }
    

    归并方法如下:

    private def merge(spills: Seq[SpilledFile], inMemory: Iterator[((Int, K), C)])
        : Iterator[(Int, Iterator[Product2[K, C]])] = {
      // 读取溢写文件
      val readers = spills.map(new SpillReader(_))
      val inMemBuffered = inMemory.buffered
      // 遍历分区
      (0 until numPartitions).iterator.map { p =>
        val inMemIterator = new IteratorForPartition(p, inMemBuffered)
        // 合并溢写文件和内存中的数据
        val iterators = readers.map(_.readNextPartition()) ++ Seq(inMemIterator)
        // 如果有聚合逻辑,按分区聚合,对key按照keyComparator排序
        if (aggregator.isDefined) {
          // Perform partial aggregation across partitions
          (p, mergeWithAggregation(
            iterators, aggregator.get.mergeCombiners, keyComparator, ordering.isDefined))
          // 如果没有聚合,但是有排序逻辑,按照ordering做归并
        } else if (ordering.isDefined) {
          // No aggregator given, but we have an ordering (e.g. used by reduce tasks in sortByKey);
          // sort the elements without trying to merge them
          (p, mergeSort(iterators, ordering.get))
          // 什么都没有直接归并
        } else {
          (p, iterators.iterator.flatten)
        }
      }
    }
    

    在write()方法中调用commitAllPartitions()方法输出数据,其中调用writeIndexFileAndCommit()方法写出数据和索引文件,如下:

    def writeIndexFileAndCommit(
        shuffleId: Int,
        mapId: Long,
        lengths: Array[Long],
        dataTmp: File): Unit = {
      // 创建索引文件和临时索引文件
      val indexFile = getIndexFile(shuffleId, mapId)
      val indexTmp = Utils.tempFileWith(indexFile)
      try {
        // 获取shuffle data file
        val dataFile = getDataFile(shuffleId, mapId)
        // There is only one IndexShuffleBlockResolver per executor, this synchronization make sure
        // the following check and rename are atomic.
        // 对于每个executor只有一个IndexShuffleBlockResolver,确保原子性
        synchronized {
          // 检查索引是否和数据文件已经有了对应关系
          val existingLengths = checkIndexAndDataFile(indexFile, dataFile, lengths.length)
          if (existingLengths != null) {
            // Another attempt for the same task has already written our map outputs successfully,
            // so just use the existing partition lengths and delete our temporary map outputs.
            // 如果存在对应关系,说明shuffle write已经完成,删除临时索引文件
            System.arraycopy(existingLengths, 0, lengths, 0, lengths.length)
            if (dataTmp != null && dataTmp.exists()) {
              dataTmp.delete()
            }
          } else {
            // 如果不存在,创建一个BufferedOutputStream
            // This is the first successful attempt in writing the map outputs for this task,
            // so override any existing index and data files with the ones we wrote.
            val out = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(indexTmp)))
            Utils.tryWithSafeFinally {
              // We take in lengths of each block, need to convert it to offsets.
              // 获取每个分区的大小,累加偏移量,写入临时索引文件
              var offset = 0L
              out.writeLong(offset)
              for (length <- lengths) {
                offset += length
                out.writeLong(offset)
              }
            } {
              out.close()
            }
    
            // 删除可能存在的其他索引文件
            if (indexFile.exists()) {
              indexFile.delete()
            }
            // 删除可能存在的其他数据文件
            if (dataFile.exists()) {
              dataFile.delete()
            }
            // 将临时文件重命名成正式文件
            if (!indexTmp.renameTo(indexFile)) {
              throw new IOException("fail to rename file " + indexTmp + " to " + indexFile)
            }
            if (dataTmp != null && dataTmp.exists() && !dataTmp.renameTo(dataFile)) {
              throw new IOException("fail to rename file " + dataTmp + " to " + dataFile)
            }
          }
        }
      } finally {
        if (indexTmp.exists() && !indexTmp.delete()) {
          logError(s"Failed to delete temporary index file at ${indexTmp.getAbsolutePath}")
        }
      }
    }
    

    4.小结

    • Spark在初始化SparkEnv的时候,会在create()方法里面初始化ShuffleManager,包含sort和tungsten-sort两种shuffle

    • ShuffleManager是一个特质,核心方法有registerShuffle()、getReader()、getWriter(),

    • SortShuffleManager是ShuffleManager的唯一实现类,在registerShuffle()方法里面选择采用哪种shuffle机制,getReader()方法只会返回一种BlockStoreShuffleReader,getWriter()方法根据不同的handle选择不同的Writer,共有三种

    • BypassMergeSortShuffleWriter:如果当前shuffle依赖中没有map端的聚合操作,并且分区数小于spark.shuffle.sort.bypassMergeThreshold的值,默认为200,启用bypass机制,核心方法有:write()、writePartitionedData()(合并所有分区文件,默认采用零拷贝方式)

    • UnsafeShuffleWriter:如果serializer支持relocation并且map端没有聚合同时分区数目不大于16777215+1三个条件都满足,采用该Writer,核心方法有:write()、insertRecordIntoSorter()(将数据插入外部选择器排序)、closeAndWriteOutput()(合并并输出文件),前一个方法里核心方法有:insertRecord()(将序列化数据插入外部排序器)、growPointerArrayIfNecessary()(如果需要额外空间需要对数组扩容或溢写到磁盘)、spill()(溢写到磁盘)、writeSortedFile()(将内存中的数据进行排序并写出到磁盘文件中)、encodePageNumberAndOffset()(对当前数据的逻辑地址进行编码,转成long型),后面的方法里核心方法有:mergeSpills()(合并溢写文件),合并文件的时候有BIO和NIO两种方式

    • SortShuffleWriter:如果上面两者都不满足,采用该Writer,该Writer会使用PartitionedAppendOnlyMap或PartitionedPariBuffer在内存中进行排序,如果超过内存限制,会溢写到文件中,在全局输出有序文件的时候,对之前的所有输出文件和当前内存中的数据进行全局归并排序,对key相同的元素会使用定义的function进行聚合核心方法有:write()、insertAll()(将数据放入ExternalSorter进行排序)、maybeSpillCollection()(是否需要溢写到磁盘)、maybeSpill()、spill()、spillMemoryIteratorToDisk()(将内存中数据溢写到磁盘)、writePartitionedMapOutput()、commitAllPartitions()里面调用writeIndexFileAndCommit()方法写出数据和索引文件

  • 相关阅读:
    题解报告:hdu 2062 Subset sequence
    CSS3滑块菜单
    CSS3环形动画菜单
    可折叠显示的发光搜索表单
    Tab动画菜单
    侧边自定义滚动条
    css3条纹边框效果
    css3图片过滤效果
    CSS3图片悬停放大动画
    CSS3响应式侧边菜单
  • 原文地址:https://www.cnblogs.com/jordan95225/p/13967000.html
Copyright © 2011-2022 走看看