zoukankan      html  css  js  c++  java
  • Rearrange a string so that all same characters become d distance away

    http://www.geeksforgeeks.org/rearrange-a-string-so-that-all-same-characters-become-at-least-d-distance-away/

    Given a string and a positive integer d. Some characters may be repeated in the given string. Rearrange characters of the given string such that the same characters become d distance away from each other. Note that there can be many possible rearrangements, the output should be one of the possible rearrangements. If no such arrangement is possible, that should also be reported.
    Expected time complexity is O(n) where n is length of input string. 

    Examples:
    Input:  "abb", d = 2
    Output: "bab"
    
    Input:  "aacbbc", d = 3
    Output: "abcabc"
    
    Input: "geeksforgeeks", d = 3
    Output: egkegkesfesor
    
    Input:  "aaa",  d = 2
    Output: Cannot be rearranged
     1 public class Solution{
     2     
     3     public static int MAX = 26;
     4     static class CharFreq {
     5         char c;
     6         int f;
     7         public CharFreq(char c, int f) {
     8             this.c = c;
     9             this.f = f;
    10         }
    11     }
    12     
    13     public static void main(String []args){
    14         String str = rearrange("geeksforgeeks",3);
    15         if (str != null)
    16             System.out.println(str);
    17     }
    18      
    19     public static String rearrange(String str, int k) {
    20         if (str.length() <= 1) return str;
    21          
    22         CharFreq[] cf = new CharFreq[MAX];
    23         int count = 0; // number of different characters 
    24         
    25         for (int i=0; i<MAX; i++) {
    26             cf[i] = new CharFreq((char) ('a'+i), 0);    
    27         }
    28         
    29         for (int i=0; i<str.length(); i++) {
    30             char ch = str.charAt(i);
    31             cf[ch-'a'].f++;
    32             if (cf[ch-'a'].f == 1) count++;
    33         }
    34         
    35         buildHeap(cf, MAX);
    36         
    37         char[] str1 = new char[str.length()];
    38         boolean[] occu = new boolean[str.length()]; // judge if the seat is occupied
    39         for (int i = 0; i<count; i++) {
    40             CharFreq chfreq = extractMax(cf, MAX-i);
    41             int pt = i;
    42             while (occu[pt]) pt++; // find the first place that is not occupied
    43             
    44             for (int j=0; j<chfreq.f; j++) {
    45                 if (pt >= str1.length) 
    46                     return null;
    47                 str1[pt] = chfreq.c;
    48                 occu[pt] = true;
    49                 pt += k;
    50             }
    51         }
    52         return new String(str1);
    53     }
    54     
    55     private static void buildHeap(CharFreq[] cf, int size) {
    56         int i = (size-1) / 2;
    57         while (i>=0) {
    58             maxHeapify(cf, i, size);
    59             i--;
    60         }
    61     }
    62     
    63     private static void swap(CharFreq cf1, CharFreq cf2) {
    64         char c = cf1.c;
    65         int f = cf1.f;
    66         cf1.c = cf2.c;
    67         cf1.f = cf2.f;
    68         cf2.c = c;
    69         cf2.f = f;
    70     }
    71     
    72     private static void maxHeapify(CharFreq[] cf, int node, int size) {
    73         int l = node * 2 + 1;
    74         int r = node * 2 + 2;
    75         int largest = node;
    76         if (l < size && cf[l].f > cf[node].f) {
    77             largest = l;
    78         }
    79         if (r < size && cf[r].f > cf[largest].f) {
    80             largest = r;
    81         }
    82         if (largest != node) {
    83             swap(cf[node], cf[largest]);
    84             maxHeapify(cf, largest, size);
    85         }
    86     }
    87     
    88     private static CharFreq extractMax(CharFreq[] cf, int size) {
    89         CharFreq max = cf[0];
    90         cf[0] = cf[size-1];
    91         cf[size-1] = null;
    92         maxHeapify(cf, 0, size-1);
    93         return max;
    94     } 
    95 }

    Analysis:

    Time Complexity: Time complexity of above implementation is O(n + mLog(MAX)). Here n is the length of str, m is count of distinct characters in str[] and MAX is maximum possible different characters. MAX is typically 256 (a constant) and m is smaller than MAX. So the time complexity can be considered as O(n). 

    More Analysis:
    The above code can be optimized to store only m characters in heap, we have kept it this way to keep the code simple. So the time complexity can be improved to O(n + mLogm). It doesn’t much matter through as MAX is a constant.

    Also, the above algorithm can be implemented using a O(mLogm) sorting algorithm. The first steps of above algorithm remain same. Instead of building a heap, we can sort the freq[] array in non-increasing order of frequencies and then consider all characters one by one from sorted array.

  • 相关阅读:
    k8s 权限控制初探
    golang gRPC 入门
    gpushare-scheduler-extender 升级依赖引发关于 golang dep 工具的思考
    admission webhook 初探(编译篇)
    以 gpushare-device-plugin 为例,探究 Resource yaml 配置
    编译 gpushare-device-plugin
    浅谈 docker 挂载 GPU 原理
    CCF计算机职业资格认证考试题解
    优达学城机器学习工程师纳米学位项目介绍
    IEEEXtreme 极限编程大赛题解
  • 原文地址:https://www.cnblogs.com/joycelee/p/5347307.html
Copyright © 2011-2022 走看看