zoukankan      html  css  js  c++  java
  • Rearrange a string so that all same characters become d distance away

    http://www.geeksforgeeks.org/rearrange-a-string-so-that-all-same-characters-become-at-least-d-distance-away/

    Given a string and a positive integer d. Some characters may be repeated in the given string. Rearrange characters of the given string such that the same characters become d distance away from each other. Note that there can be many possible rearrangements, the output should be one of the possible rearrangements. If no such arrangement is possible, that should also be reported.
    Expected time complexity is O(n) where n is length of input string. 

    Examples:
    Input:  "abb", d = 2
    Output: "bab"
    
    Input:  "aacbbc", d = 3
    Output: "abcabc"
    
    Input: "geeksforgeeks", d = 3
    Output: egkegkesfesor
    
    Input:  "aaa",  d = 2
    Output: Cannot be rearranged
     1 public class Solution{
     2     
     3     public static int MAX = 26;
     4     static class CharFreq {
     5         char c;
     6         int f;
     7         public CharFreq(char c, int f) {
     8             this.c = c;
     9             this.f = f;
    10         }
    11     }
    12     
    13     public static void main(String []args){
    14         String str = rearrange("geeksforgeeks",3);
    15         if (str != null)
    16             System.out.println(str);
    17     }
    18      
    19     public static String rearrange(String str, int k) {
    20         if (str.length() <= 1) return str;
    21          
    22         CharFreq[] cf = new CharFreq[MAX];
    23         int count = 0; // number of different characters 
    24         
    25         for (int i=0; i<MAX; i++) {
    26             cf[i] = new CharFreq((char) ('a'+i), 0);    
    27         }
    28         
    29         for (int i=0; i<str.length(); i++) {
    30             char ch = str.charAt(i);
    31             cf[ch-'a'].f++;
    32             if (cf[ch-'a'].f == 1) count++;
    33         }
    34         
    35         buildHeap(cf, MAX);
    36         
    37         char[] str1 = new char[str.length()];
    38         boolean[] occu = new boolean[str.length()]; // judge if the seat is occupied
    39         for (int i = 0; i<count; i++) {
    40             CharFreq chfreq = extractMax(cf, MAX-i);
    41             int pt = i;
    42             while (occu[pt]) pt++; // find the first place that is not occupied
    43             
    44             for (int j=0; j<chfreq.f; j++) {
    45                 if (pt >= str1.length) 
    46                     return null;
    47                 str1[pt] = chfreq.c;
    48                 occu[pt] = true;
    49                 pt += k;
    50             }
    51         }
    52         return new String(str1);
    53     }
    54     
    55     private static void buildHeap(CharFreq[] cf, int size) {
    56         int i = (size-1) / 2;
    57         while (i>=0) {
    58             maxHeapify(cf, i, size);
    59             i--;
    60         }
    61     }
    62     
    63     private static void swap(CharFreq cf1, CharFreq cf2) {
    64         char c = cf1.c;
    65         int f = cf1.f;
    66         cf1.c = cf2.c;
    67         cf1.f = cf2.f;
    68         cf2.c = c;
    69         cf2.f = f;
    70     }
    71     
    72     private static void maxHeapify(CharFreq[] cf, int node, int size) {
    73         int l = node * 2 + 1;
    74         int r = node * 2 + 2;
    75         int largest = node;
    76         if (l < size && cf[l].f > cf[node].f) {
    77             largest = l;
    78         }
    79         if (r < size && cf[r].f > cf[largest].f) {
    80             largest = r;
    81         }
    82         if (largest != node) {
    83             swap(cf[node], cf[largest]);
    84             maxHeapify(cf, largest, size);
    85         }
    86     }
    87     
    88     private static CharFreq extractMax(CharFreq[] cf, int size) {
    89         CharFreq max = cf[0];
    90         cf[0] = cf[size-1];
    91         cf[size-1] = null;
    92         maxHeapify(cf, 0, size-1);
    93         return max;
    94     } 
    95 }

    Analysis:

    Time Complexity: Time complexity of above implementation is O(n + mLog(MAX)). Here n is the length of str, m is count of distinct characters in str[] and MAX is maximum possible different characters. MAX is typically 256 (a constant) and m is smaller than MAX. So the time complexity can be considered as O(n). 

    More Analysis:
    The above code can be optimized to store only m characters in heap, we have kept it this way to keep the code simple. So the time complexity can be improved to O(n + mLogm). It doesn’t much matter through as MAX is a constant.

    Also, the above algorithm can be implemented using a O(mLogm) sorting algorithm. The first steps of above algorithm remain same. Instead of building a heap, we can sort the freq[] array in non-increasing order of frequencies and then consider all characters one by one from sorted array.

  • 相关阅读:
    索引的设计与使用
    字符集
    选择合适的数据类型
    java 23种设计模式 深入理解(转)
    进程间的通信方式
    SPRING的事务传播
    面向对象的五大基本原则
    J2EE中常用的名词解释
    JVM内存配置参数:
    域对象
  • 原文地址:https://www.cnblogs.com/joycelee/p/5347307.html
Copyright © 2011-2022 走看看