Description
An abundant number is a positive integer n for which Sigma(n) – 2n > 0, Where Sigma(n) is defined as the sum of all the divisors of n. And the quantity Sigma(n) – 2n is called abundance.
Given the range of n, you should find out the maximum abundance value that can be reached. For example, if the range is [10,12], then the only abundant number is 12, and the maximum abundance value is Sigma(12) – 2 * 12 = 4.
Input
Input may contain several test cases. The first line is a positive integer, T (T<=20), the number of test cases below. Each test case contains two positive integers x, y, (1<= x <= y <= 1024), indicating the range of n
Output
For each test case, output the maximum abundance value that can be reached in the range of n. If there is no abundant number n in the given range, simply output -1.
水题,枚举并更新记录最大值即可
有一个小技巧,每个case中都将max初始化为-1,如果没有abundant number,max就不会被更新,这样最后就会直接输出-1,省去了判断语句
1 #include<stdio.h> 2 int sigma( int n ) 3 { 4 int i, sum = 0; 5 6 for ( i = 1; i <= n; i++ ) 7 if ( n % i == 0 ) 8 sum += i; 9 10 return sum; 11 } 12 int main() 13 { 14 int t, x, y, i, max, abun; 15 16 scanf("%d", &t); 17 while(t--) 18 { 19 scanf("%d %d", &x, &y); 20 max = -1; 21 22 for ( i = x; i <= y; i++ ) 23 { 24 abun = sigma(i) - 2 * i; 25 if ( abun > 0 ) 26 if ( abun > max ) 27 max = abun; 28 } 29 30 printf("%d\n", max); 31 } 32 33 return 0; 34 }