zoukankan      html  css  js  c++  java
  • 数组排序-堆排序(Heap Sort)


    概念:

        堆排序是指堆积树(二叉树)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值。
    即:
        A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。


    定义:

        n个关键字序列 K1,K2,...Kn 称为(Heap),当且仅当该序列满足如下性质(简称为堆性质):
            Ki <= K(2i)且Ki <= K(2i+1)(1 <= i <= n/2),当然,这是小根堆,大根堆则换成>=号。//K(i)相当于二叉树的非叶子节点,K(2i)则是左子节点,K(2i+1)是右子节点
        若将此序列所存储的向量R[1..n]看作是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:
            树中任一非叶子节点的关键字均不大于(或不小于)其左右孩子(若存在)节点的关键字。
        堆分为大根堆和小根堆:根节点(亦称为“堆顶”)的关键字是堆里所有节点关键字中最小者的堆称为“小根堆”,又称“最小堆”。根节点(亦称为“堆顶”)的关键字是堆里所有节点关键字中的最大者的,称为“大根堆”,又称“最大堆”。
        注意:a堆中任一子树亦是堆。b以上讨论的堆实际上是二叉堆(Binary Heap),类似的可定义K叉堆。


    高度:

        堆可以被看成是一棵树,节点在堆中的高度可以被定义为从本节点到叶子节点的最长简单下降路径上边的数目;定义堆的高度为树根的高度。我们将看到,堆结构上的一些基本操作的运行时间至多是与树的高度成正比,为O(lgn)。


    排序过程:

        堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。

    (1)用大根堆排序的基本思想:

            ①先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
            ②再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys <= R[n].keys
            ③由于交换后新的根R[1]可能违反堆性值,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍然满足关系R[1..n-2].keys <= R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
            ......
            直到无序区只有一个元素为止。

    (2)大根堆排序算法的基本操作:

            ①建堆:建堆是不断调整堆的过程,从len/2处开始调整,一直到第一个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len/2到0处一直调用调整堆的过程,相当于o(h1)+o(h2)+...+o(hlen/2),其中h表示节点的深度,len/2表示节点的个数,这是一个求和的过程,结果是线性的O(n)。
            ②调整堆:调整堆在构建堆的过程中会用到,而且在堆排序过程中也会用到。利用的思想是比较节点i和它的孩子节点left(i)、right(i),选出三者中最大(或最小)者,如果最大(或最小)者的值不是节点i而是它的一个孩子节点,那便交换节点i和该节点,然后再调用调整堆的过程,这是一个递归的过程。调整堆的过程时间复杂度与堆的深度有关系,是lgn的操作,因为是沿着深度方向进行调整的。
            ③堆排序:堆排序是利用上面的两个过程来进行的。首先是根据元素构建堆,然后将堆的根节点取出(一般是与最后一个节点进行交换),将前面len-1个节点继续进行堆调整的过程,然后再将根节点取出,这样一直到所有节点都取出。堆排序过程的时间复杂度是O(nlgn)。因为建堆的时间复杂度是O(n)(调用一次);调整堆的时间复杂度是lgn,调用了n-1次,所以堆排序的时间复杂度是O(nlgn)[2]。

    (3)注意:

            ①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
            ②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。

    (4)特点:

            堆排序(Heap Sort)是一树形选择排序。堆排序的特点是:在排序过程中,将R[1..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系(参见:二叉树的顺序存储结构),在当前无序区中选择关键字最大(或最小)的记录。


    示例:

    package com.cnblogs.lxj;
    
    /**
     * @author liuxiaojiang
     * @packageName:com.cnblogs.lxj
     * @ClassName:HeapSort
     * @Description:测试堆排序
     * @date 2020/11/26
     */
    public class HeapSort {
    
        /**
         * 主方法
         * @param args
         */
        public static void main(String[] args) {
            int[] a = {6,5,3,1,8,7,2,4};
            printArray(a);
            heapSort(a);
            printArray(a);
        }
    
        /**
         * 堆排序方法
         * @param a
         */
        public static void heapSort(int[] a){
            buildHeap(a);
            printArray(a);
            for(int i = a.length-1;i > 0;i--){
                swapArray(i,0,a);
                adjustTopToDown(0,a,i);
            }
        }
    
        /**
         * 建堆方法
         * @param a
         */
        public static void buildHeap(int[] a){
            for(int i = (a.length-1)/2;i >= 0;i--){
                adjustTopToDown(i,a,a.length);
            }
        }
    
        /**
         * 调整堆方法
         * @param k
         * @param a
         * @param length
         */
        public static void adjustTopToDown(int k,int[] a,int length){
            for(int i = 2 * k + 1;i < length;i = 2 * i + 1){
                if(i < length - 1){
                    if(a[i] < a[i + 1]){
                        i++;
                    }
                }
    
                if(a[k] < a[i]){
                    swapArray(k,i,a);
                    k = i;
                }else {
                    break;
                }
            }
        }
    
        /**
         * 交换方法
         * @param i
         * @param j
         * @param a
         */
        public static void swapArray(int i,int j,int[] a){
            int temp = a[i];
            a[i] = a[j];
            a[j] = temp;
        }
    
        /**
         * 输出方法
         * @param array
         */
        public static void printArray(int[] array){
            for(int i : array){
                System.out.print(i + " ");
            }
    
            System.out.println();
        }
    
    }
    

    运行结果:

    6 5 3 1 8 7 2 4      //数组初始化
    8 6 7 4 5 3 2 1      //建堆及调整堆
    1 2 3 4 5 6 7 8      //堆排序
    

    原理:


    算法分析:

        堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
            平均性能
            O(N*logN)
            其它性能
        由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
        堆排序是就地排序,辅助空间为O(1)
        堆排序是不稳定的排序方法(排序的稳定性是指:如果在排序的序列中,存在前后相同的两个元素的话,排序前和排序后他们的相对位置不发生变化)


  • 相关阅读:
    gThumb 3.1.2 发布,支持 WebP 图像
    航空例行天气预报解析 metaf2xml
    Baruwa 1.1.2 发布,邮件监控系统
    Bisect 1.3 发布,Caml 代码覆盖测试
    MoonScript 0.2.2 发布,基于 Lua 的脚本语言
    Varnish 入门
    快速增量备份程序 DeltaCopy
    恢复模糊的图像 SmartDeblur
    Cairo 1.12.8 发布,向量图形会图库
    iText 5.3.4 发布,Java 的 PDF 开发包
  • 原文地址:https://www.cnblogs.com/joyfulcode/p/14041447.html
Copyright © 2011-2022 走看看