zoukankan      html  css  js  c++  java
  • 桥环形高分子的标度理论——链滴图像

    苏州大学王衍伟老师最近在Macromolecular Theory and Simulations上发表的一篇文章讨论了桥环形高分子(Bridged Polycyclic Ring Polymers),文中此类高分子的大小做了弗洛里(Flory)标度分析。此标度分析还可以用链滴(Blob)图像做得更细致一些。

    桥环形高分子是把(f)条支链的端点粘在一起形成的环状高分子,就像西瓜皮上的纹。如果(f=1),就是线性链,如果(f=2),就是常见的环状高分子。(f=3),对应的是双环( heta)形高分子,(f=4),对应的是(delta)形高分子,如下图所示。


    桥环形高分子示意图

    弗洛里(Flory)理论

    考虑桥环形高分子由(f)条链长为(N)的支链组成,链节库恩长度(Kuhn length)为(b),环状高分子大小为(R)。只考虑良溶剂情况,排除体积为(vb^3)

    自由能由两部分组成,熵弹性和排除体积相互作用,

    egin{equation} Fapprox ffrac{R^2}{Nb^2}+vb^3frac{(fN)^2}{R^3} label{Floryenergy} end{equation}

    对自由能求极小,(frac{delta F}{delta R}=0),于是得

    egin{equation} R approx bv^{1/5}f^{1/5}N^{3/5} label{FloryR} end{equation}

    这个结果与星状高分子的标度理论结果(J. Physique 43 (1982)531 - 538 )完全一样。

    链滴(Blob)图像

    仿对星状高分子的讨论(J. Physique 43 (1982)531 - 538 ),我们也可以用链滴图像讨论桥环形高分子。


    链滴图像讨论桥环形高分子

    如上图所示,在柱坐标系里,在点((r,z))处的链滴平行于(z)轴方向的大小为(xi_z(r,z)),垂直于(z)轴方向的大小为(xi_r(r,z))(z)处垂直于(z)轴的平面切割桥环形高分子,所得截面的大小为(R_0(z))。链滴充满空间,易得链滴大小为

    egin{equation} xi_z(r,z)approx xi_r(r,z)approx xi(z)approx f^{-1/2}R_0(z) label{blobxi} end{equation}

    可见,桥环形高分子占据的空间是球形的,假设球的半径为(R),于是有

    egin{equation} R_0(z)=(R^2-z^2)^{1/2} label{R0} end{equation}

    假设一个链滴内高分子链节数目为(g),考虑高分子处于良溶剂的情况,则有

    egin{equation} xi(z)approx g^{3/5}v^{1/3}b label{blobg} end{equation}

    于是高分子密度分布为

    egin{equation} ho(z)approx g/xi^3(z) label{densdistr} end{equation}

    将eqref{blobxi}、eqref{R0}和eqref{blobg}代入eqref{densdistr},得

    egin{equation} ho(z)approx xi^{-4/3}(z)v^{-1/3}b^{-5/3}approx f^{2/3}(R^2-z^2)^{-2/3}(vb)^{-5/3} label{densz} end{equation}

    密度分布与高分子大小之间有如下关系:

    egin{equation} 2int_0^R ho(z)R_0^2mathrm dzapprox fN label{conservation} end{equation}

    将eqref{densz}代入eqref{conservation},有

    egin{equation*} egin{split} 2f^{2/3}v^{-1/3}b^{-5/3}int_0^R (R^2-z^2)^{-2/3}R_0^2mathrm dz &approx & fN \ 2int_0^R (R^2-z^2)^{1/3}mathrm dz &approx & f^{1/3}v^{1/3}b^{5/3}N \ 2R^{5/3}int_0^1 (1-t^2)^{1/3}mathrm dt &approx & f^{1/3}v^{1/3}b^{5/3}N end{split} end{equation*}

    略去常数系数,得

    egin{equation} R approx bv^{1/5}f^{1/5}N^{3/5} label{blbR} end{equation}

    结果与弗洛里理论结果eqref{FloryR}完全一致。

    后记

    王衍伟老师的这篇文章的第一部分的高斯链解析理论是复旦大学李剑锋老师完成的,这次合作是在微信上高分子理论计算群里讨论和促成的。各种媒体各种人物总是批评中国科学研究者浮躁,坐不了冷板凳,做研究不是好奇心驱动,而是为了评职称、得奖励。这种批评,在高分子理论界,真是不那么严重。中国高分子理论界,有一大票对科学极具热情的研究者,从十几年前的小众领域,发展到现在人丁兴旺,青年才俊层出不穷。我也身居其中,感觉甚是美好。

  • 相关阅读:
    Asp.net2.0 中自定义过滤器对Response内容进行处理 dodo
    自动化测试工具 dodo
    TestDriven.NET 2.0——单元测试的好助手(转) dodo
    JS弹出窗口的运用与技巧 dodo
    ElasticSearch 简介 规格严格
    修改PostgreSQL字段长度导致cached plan must not change result type错误 规格严格
    Linux系统更改时区(转) 规格严格
    mvn编译“Cannot find matching toolchain definitions for the following toolchain types“报错解决方法 规格严格
    ElasticSearch 集群 & 数据备份 & 优化 规格严格
    Elasticsearch黑鸟教程22:索引模板的详细介绍 规格严格
  • 原文地址:https://www.cnblogs.com/joyfulphysics/p/5636111.html
Copyright © 2011-2022 走看看