zoukankan      html  css  js  c++  java
  • 混合溶剂中的高分子凝胶中的渗透压的一般计算

    在博文混合溶剂中的高分子凝胶理论推导中,渗透压计算是按照各组分均匀分布来计算的。在一般情况下,各组分不是均匀分布,那该如何计算渗透压呢?

    对于混合溶剂中的高分子凝胶,由于体积不可压缩性约束条件,三种组分不是独立的,我们把独立组分选为凝胶和一种溶剂。自由能密度为

    egin{equation*} egin{split} f(phi_{2},phi_3)=&(1-phi_{2}-phi_3)ln(1-phi_{2}-phi_3)+phi_{2}lnphi_{2}\ &+chi_{12}(1-phi_{2}-phi_3)phi_2 +chi_{13}(1-phi_{2}-phi_3)phi_3+chi_{23}phi_2phi_3 end{split} end{equation*}

    渗透压为

    egin{equation*} Pi=phi_2frac{partial f}{partial phi_2}+phi_3frac{partial f}{partial phi_3}-f(phi_{2},phi_3) end{equation*}

    第一项

    egin{equation*} egin{split} phi_2frac{partial f}{partial phi_2}=&phi_2left [-ln(1-phi_{2}-phi_3)+lnphi_{2}+chi_{12}(1-phi_{2}-phi_3)-chi_{12} phi_{2} \ -chi_{13}phi_3+chi_{23}phi_3 ight ]\ =&-phi_2ln(1-phi_{2}-phi_3)+phi_2lnphi_{2}+chi_{12}(1-phi_{2}-phi_3)phi_2 \ &-chi_{12} phi_{2}^2-chi_{13}phi_2phi_3+chi_{23}phi_2phi_3 end{split} end{equation*}

    第二项

    egin{equation*} egin{split} phi_3frac{partial f}{partial phi_3}=&phi_3left [-ln(1-phi_{2}-phi_3)-1-chi_{12}phi_{2}-chi_{13}phi_3+\ chi_{13}(1-phi_{2}-phi_3)+chi_{23}phi_2 ight ]\ =&-phi_3ln(1-phi_{2}-phi_3)-phi_3-chi_{12}phi_{2}phi_3-chi_{13}phi_3^2+\ &chi_{13}(1-phi_{2}-phi_3)phi_3+chi_{23}phi_2phi_3 end{split} end{equation*}

    于是渗透压为

    egin{equation*} egin{split} Pi=&phi_2frac{partial f}{partial phi_2}+phi_3frac{partial f}{partial phi_3}-f(phi_{2},phi_3)\ =&-ln(1-phi_{2}-phi_3)-phi_3-chi_{12}phi_{2}phi_3-chi_{12}phi_{2}^2-chi_{13}phi_2phi_3 -\ &chi_{13}phi_3^2+chi_{23}phi_2phi_3 \ =&-ln(1-phi_{2}-phi_3)-phi_3-chi_{13}phi_3^2-chi_{12}phi_{2}^2+Gphi_2phi_3 end{split} end{equation*}

    其中

    egin{equation*} G=chi_{23}-chi_{12}-chi_{13} end{equation*}

    本体溶液自自由能密度

    egin{equation*} f_s(phi_{2s})=(1-phi_{2s})ln(1-phi_{2s})+phi_{2s}lnphi_{2s}+chi_{12}(1-phi_{2s})phi_{2s} end{equation*}

    渗透压为

    egin{equation*} egin{split} Pi_s=&phi_{2s}frac{partial f_s}{partial phi_{2s}}-f_s(phi_{2s})\ =&-ln(1-phi_{2s})-chi_{12}phi_{2s}^2 end{split} end{equation*}

    其他体系的渗透压计算与此类似。

  • 相关阅读:
    安装、设置与启动MySql5.1.30绿色版的方法
    可执行jar包的maven配置
    Maven配置文件说明
    Maven常用命令
    eclipse下创建maven工程
    [Linux]常用命令与目录全拼
    Linux的端口和服务
    TortoiseSVN
    SpringCloud-断路器(Hystrix)
    SpringCloud-服务的消费者(Feign)
  • 原文地址:https://www.cnblogs.com/joyfulphysics/p/5824460.html
Copyright © 2011-2022 走看看