zoukankan      html  css  js  c++  java
  • SnowFlake --- 分布式id生成算法

    转载自:https://segmentfault.com/a/1190000011282426

    概述

    SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

    • 1位,不用。二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0
    • 41位,用来记录时间戳(毫秒)。

      <ul style="margin-left:3em;"><li>41位可以表示241−1个数字,</li>
      	<li>如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至&nbsp;241−1,减1是因为可表示的数值范围是从0开始算的,而不是1。</li>
      	<li>也就是说41位可以表示241−1个毫秒的值,转化成单位年则是(241−1)/(1000∗60∗60∗24∗365)=69年</li>
      </ul></li>
      <li>
      <p><code>10位</code>,用来记录工作机器id。</p>
      
      <ul style="margin-left:3em;"><li>可以部署在210=1024个节点,包括<code>5位datacenterId</code>和<code>5位workerId</code></li>
      	<li><code>5位(bit)</code>可以表示的最大正整数是25−1=31,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId</li>
      </ul></li>
      <li>
      <p><code>12位</code>,序列号,用来记录同毫秒内产生的不同id。</p>
      
      <ul style="margin-left:3em;"><li><code>12位(bit)</code>可以表示的最大正整数是212−1=4096,即可以用0、1、2、3、....4095这4096个数字,来表示同一机器同一时间截(毫秒)内产生的4096个ID序号</li>
      </ul></li>
      

    由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

    SnowFlake可以保证:

    • 所有生成的id按时间趋势递增
    • 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

    Talk is cheap, show you the code

    以下是Twitter官方原版的,用Scala写的,(我也不懂Scala,当成Java看即可):

    1. /** Copyright 2010-2012 Twitter, Inc.*/
    2. package com.twitter.service.snowflake
    3. import com.twitter.ostrich.stats.Stats
    4. import com.twitter.service.snowflake.gen._
    5. import java.util.Random
    6. import com.twitter.logging.Logger
    7. /**
    8. * An object that generates IDs.
    9. * This is broken into a separate class in case
    10. * we ever want to support multiple worker threads
    11. * per process
    12. */
    13. class IdWorker(
    14. val workerId: Long,
    15. val datacenterId: Long,
    16. private val reporter: Reporter,
    17. var sequence: Long = 0L) extends Snowflake.Iface {
    18. private[this] def genCounter(agent: String) = {
    19. Stats.incr("ids_generated")
    20. Stats.incr("ids_generated_%s".format(agent))
    21. }
    22. private[this] val exceptionCounter = Stats.getCounter("exceptions")
    23. private[this] val log = Logger.get
    24. private[this] val rand = new Random
    25. val twepoch = 1288834974657L
    26. private[this] val workerIdBits = 5L
    27. private[this] val datacenterIdBits = 5L
    28. private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)
    29. private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)
    30. private[this] val sequenceBits = 12L
    31. private[this] val workerIdShift = sequenceBits
    32. private[this] val datacenterIdShift = sequenceBits + workerIdBits
    33. private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits
    34. private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)
    35. private[this] var lastTimestamp = -1L
    36. // sanity check for workerId
    37. if (workerId > maxWorkerId || workerId < 0) {
    38. exceptionCounter.incr(1)
    39. throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId))
    40. }
    41. if (datacenterId > maxDatacenterId || datacenterId < 0) {
    42. exceptionCounter.incr(1)
    43. throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId))
    44. }
    45. log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
    46. timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId)
    47. def get_id(useragent: String): Long = {
    48. if (!validUseragent(useragent)) {
    49. exceptionCounter.incr(1)
    50. throw new InvalidUserAgentError
    51. }
    52. val id = nextId()
    53. genCounter(useragent)
    54. reporter.report(new AuditLogEntry(id, useragent, rand.nextLong))
    55. id
    56. }
    57. def get_worker_id(): Long = workerId
    58. def get_datacenter_id(): Long = datacenterId
    59. def get_timestamp() = System.currentTimeMillis
    60. protected[snowflake] def nextId(): Long = synchronized {
    61. var timestamp = timeGen()
    62. if (timestamp < lastTimestamp) {
    63. exceptionCounter.incr(1)
    64. log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
    65. throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format(
    66. lastTimestamp - timestamp))
    67. }
    68. if (lastTimestamp == timestamp) {
    69. sequence = (sequence + 1) & sequenceMask
    70. if (sequence == 0) {
    71. timestamp = tilNextMillis(lastTimestamp)
    72. }
    73. } else {
    74. sequence = 0
    75. }
    76. lastTimestamp = timestamp
    77. ((timestamp - twepoch) << timestampLeftShift) |
    78. (datacenterId << datacenterIdShift) |
    79. (workerId << workerIdShift) |
    80. sequence
    81. }
    82. protected def tilNextMillis(lastTimestamp: Long): Long = {
    83. var timestamp = timeGen()
    84. while (timestamp <= lastTimestamp) {
    85. timestamp = timeGen()
    86. }
    87. timestamp
    88. }
    89. protected def timeGen(): Long = System.currentTimeMillis()
    90. val AgentParser = """([a-zA-Z][a-zA-Z-0-9]*)""".r
    91. def validUseragent(useragent: String): Boolean = useragent match {
    92. case AgentParser(_) => true
    93. case _ => false
    94. }
    95. }

    Scala是一门可以编译成字节码的语言,简单理解是在Java语法基础上加上了很多语法糖,例如不用每条语句后写分号,可以使用动态类型等等。抱着试一试的心态,我把Scala版的代码“翻译”成Java版本的,对scala代码改动的地方如下:

    1. /** Copyright 2010-2012 Twitter, Inc.*/
    2. package com.twitter.service.snowflake
    3. import com.twitter.ostrich.stats.Stats
    4. import com.twitter.service.snowflake.gen._
    5. import java.util.Random
    6. import com.twitter.logging.Logger
    7. /**
    8. * An object that generates IDs.
    9. * This is broken into a separate class in case
    10. * we ever want to support multiple worker threads
    11. * per process
    12. */
    13. class IdWorker( // |
    14. val workerId: Long, // |
    15. val datacenterId: Long, // |<--这部分改成Java的构造函数形式
    16. private val reporter: Reporter,//日志相关,删 // |
    17. var sequence: Long = 0L) // |
    18. extends Snowflake.Iface { //接口找不到,删 // |
    19. private[this] def genCounter(agent: String) = { // |
    20. Stats.incr("ids_generated") // |
    21. Stats.incr("ids_generated_%s".format(agent)) // |<--错误、日志处理相关,删
    22. } // |
    23. private[this] val exceptionCounter = Stats.getCounter("exceptions") // |
    24. private[this] val log = Logger.get // |
    25. private[this] val rand = new Random // |
    26. val twepoch = 1288834974657L
    27. private[this] val workerIdBits = 5L
    28. private[this] val datacenterIdBits = 5L
    29. private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)
    30. private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)
    31. private[this] val sequenceBits = 12L
    32. private[this] val workerIdShift = sequenceBits
    33. private[this] val datacenterIdShift = sequenceBits + workerIdBits
    34. private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits
    35. private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)
    36. private[this] var lastTimestamp = -1L
    37. //----------------------------------------------------------------------------------------------------------------------------//
    38. // sanity check for workerId //
    39. if (workerId > maxWorkerId || workerId < 0) { //
    40. exceptionCounter.incr(1) //<--错误处理相关,删 //
    41. throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId)) //这
    42. // |-->改成:throw new IllegalArgumentException //部
    43. // (String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)) //分
    44. } //放
    45. //到
    46. if (datacenterId > maxDatacenterId || datacenterId < 0) { //构
    47. exceptionCounter.incr(1) //<--错误处理相关,删 //造
    48. throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId)) //函
    49. // |-->改成:throw new IllegalArgumentException //数
    50. // (String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)) //中
    51. } //
    52. //
    53. log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", //
    54. timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId) //
    55. // |-->改成:System.out.printf("worker...%d...",timestampLeftShift,...); //
    56. //----------------------------------------------------------------------------------------------------------------------------//
    57. //-------------------------------------------------------------------//
    58. //这个函数删除错误处理相关的代码后,剩下一行代码:val id = nextId() //
    59. //所以我们直接调用nextId()函数可以了,所以在“翻译”时可以删除这个函数 //
    60. def get_id(useragent: String): Long = { //
    61. if (!validUseragent(useragent)) { //
    62. exceptionCounter.incr(1) //
    63. throw new InvalidUserAgentError //删
    64. } //除
    65. //
    66. val id = nextId() //
    67. genCounter(useragent) //
    68. //
    69. reporter.report(new AuditLogEntry(id, useragent, rand.nextLong)) //
    70. id //
    71. } //
    72. //-------------------------------------------------------------------//
    73. def get_worker_id(): Long = workerId // |
    74. def get_datacenter_id(): Long = datacenterId // |<--改成Java函数
    75. def get_timestamp() = System.currentTimeMillis // |
    76. protected[snowflake] def nextId(): Long = synchronized { // 改成Java函数
    77. var timestamp = timeGen()
    78. if (timestamp < lastTimestamp) {
    79. exceptionCounter.incr(1) // 错误处理相关,删
    80. log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp); // 改成System.err.printf(...)
    81. throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format(
    82. lastTimestamp - timestamp)) // 改成RumTimeException
    83. }
    84. if (lastTimestamp == timestamp) {
    85. sequence = (sequence + 1) & sequenceMask
    86. if (sequence == 0) {
    87. timestamp = tilNextMillis(lastTimestamp)
    88. }
    89. } else {
    90. sequence = 0
    91. }
    92. lastTimestamp = timestamp
    93. ((timestamp - twepoch) << timestampLeftShift) | // |<--加上关键字return
    94. (datacenterId << datacenterIdShift) | // |
    95. (workerId << workerIdShift) | // |
    96. sequence // |
    97. }
    98. protected def tilNextMillis(lastTimestamp: Long): Long = { // 改成Java函数
    99. var timestamp = timeGen()
    100. while (timestamp <= lastTimestamp) {
    101. timestamp = timeGen()
    102. }
    103. timestamp // 加上关键字return
    104. }
    105. protected def timeGen(): Long = System.currentTimeMillis() // 改成Java函数
    106. val AgentParser = """([a-zA-Z][a-zA-Z-0-9]*)""".r // |
    107. // |
    108. def validUseragent(useragent: String): Boolean = useragent match { // |<--日志相关,删
    109. case AgentParser(_) => true // |
    110. case _ => false // |
    111. } // |
    112. }

    改出来的Java版:

    1. public class IdWorker{
    2. private long workerId;
    3. private long datacenterId;
    4. private long sequence;
    5. public IdWorker(long workerId, long datacenterId, long sequence){
    6. // sanity check for workerId
    7. if (workerId > maxWorkerId || workerId < 0) {
    8. throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
    9. }
    10. if (datacenterId > maxDatacenterId || datacenterId < 0) {
    11. throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
    12. }
    13. System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
    14. timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
    15. this.workerId = workerId;
    16. this.datacenterId = datacenterId;
    17. this.sequence = sequence;
    18. }
    19. private long twepoch = 1288834974657L;
    20. private long workerIdBits = 5L;
    21. private long datacenterIdBits = 5L;
    22. private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    23. private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    24. private long sequenceBits = 12L;
    25. private long workerIdShift = sequenceBits;
    26. private long datacenterIdShift = sequenceBits + workerIdBits;
    27. private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    28. private long sequenceMask = -1L ^ (-1L << sequenceBits);
    29. private long lastTimestamp = -1L;
    30. public long getWorkerId(){
    31. return workerId;
    32. }
    33. public long getDatacenterId(){
    34. return datacenterId;
    35. }
    36. public long getTimestamp(){
    37. return System.currentTimeMillis();
    38. }
    39. public synchronized long nextId() {
    40. long timestamp = timeGen();
    41. if (timestamp < lastTimestamp) {
    42. System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
    43. throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
    44. lastTimestamp - timestamp));
    45. }
    46. if (lastTimestamp == timestamp) {
    47. sequence = (sequence + 1) & sequenceMask;
    48. if (sequence == 0) {
    49. timestamp = tilNextMillis(lastTimestamp);
    50. }
    51. } else {
    52. sequence = 0;
    53. }
    54. lastTimestamp = timestamp;
    55. return ((timestamp - twepoch) << timestampLeftShift) |
    56. (datacenterId << datacenterIdShift) |
    57. (workerId << workerIdShift) |
    58. sequence;
    59. }
    60. private long tilNextMillis(long lastTimestamp) {
    61. long timestamp = timeGen();
    62. while (timestamp <= lastTimestamp) {
    63. timestamp = timeGen();
    64. }
    65. return timestamp;
    66. }
    67. private long timeGen(){
    68. return System.currentTimeMillis();
    69. }
    70. //---------------测试---------------
    71. public static void main(String[] args) {
    72. IdWorker worker = new IdWorker(1,1,1);
    73. for (int i = 0; i < 30; i++) {
    74. System.out.println(worker.nextId());
    75. }
    76. }
    77. }

    代码理解

    上面的代码中,有部分位运算的代码,如:

    1. sequence = (sequence + 1) & sequenceMask;
    2. private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    3. return ((timestamp - twepoch) << timestampLeftShift) |
    4. (datacenterId << datacenterIdShift) |
    5. (workerId << workerIdShift) |
    6. sequence;

    为了能更好理解,我对相关知识研究了一下。

    负数的二进制表示

    在计算机中,负数的二进制是用补码来表示的。
    假设我是用Java中的int类型来存储数字的,
    int类型的大小是32个二进制位(bit),即4个字节(byte)。(1 byte = 8 bit)
    那么十进制数字3在二进制中的表示应该是这样的:

    1. 00000000 00000000 00000000 00000011
    2. // 3的二进制表示,就是原码

    那数字-3在二进制中应该如何表示?
    我们可以反过来想想,因为-3+3=0,
    在二进制运算中把-3的二进制看成未知数x来求解
    求解算式的二进制表示如下:

    1. 00000000 00000000 00000000 00000011 //3,原码
    2. + xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx //-3,补码
    3. -----------------------------------------------
    4. 00000000 00000000 00000000 00000000

    反推x的值,3的二进制加上什么值才使结果变成00000000 00000000 00000000 00000000?:

    1. 00000000 00000000 00000000 00000011 //3,原码
    2. + 11111111 11111111 11111111 11111101 //-3,补码
    3. -----------------------------------------------
    4. 1 00000000 00000000 00000000 00000000

    反推的思路是3的二进制数从最低位开始逐位加1,使溢出的1不断向高位溢出,直到溢出到第33位。然后由于int类型最多只能保存32个二进制位,所以最高位的1溢出了,剩下的32位就成了(十进制的)0。

    补码的意义就是可以拿补码和原码(3的二进制)相加,最终加出一个“溢出的0”

    以上是理解的过程,实际中记住公式就很容易算出来:

    • 补码 = 反码 + 1
    • 补码 = (原码 - 1)再取反码

    因此-1的二进制应该这样算:

    1. 00000000 00000000 00000000 00000001 //原码:1的二进制
    2. 11111111 11111111 11111111 11111110 //取反码:1的二进制的反码
    3. 11111111 11111111 11111111 11111111 //加1:-1的二进制表示(补码)

    用位运算计算n个bit能表示的最大数值

    比如这样一行代码:

    1. private long workerIdBits = 5L;
    2. private long maxWorkerId = -1L ^ (-1L << workerIdBits);

    上面代码换成这样看方便一点:
    long maxWorkerId = -1L ^ (-1L << 5L)

    咋一看真的看不准哪个部分先计算,于是查了一下Java运算符的优先级表:

    所以上面那行代码中,运行顺序是:

    • -1 左移 5,得结果a
    • -1 异或 a

    long maxWorkerId = -1L ^ (-1L << 5L)的二进制运算过程如下:

    -1 左移 5,得结果a :

    1. 11111111 11111111 11111111 11111111 //-1的二进制表示(补码)
    2. 11111 11111111 11111111 11111111 11100000 //高位溢出的不要,低位补0
    3. 11111111 11111111 11111111 11100000 //结果a

    -1 异或 a :

    1. 11111111 11111111 11111111 11111111 //-1的二进制表示(补码)
    2. ^ 11111111 11111111 11111111 11100000 //两个操作数的位中,相同则为0,不同则为1
    3. ---------------------------------------------------------------------------
    4. 00000000 00000000 00000000 00011111 //最终结果31

    最终结果是31,二进制00000000 00000000 00000000 00011111转十进制可以这么算:

    24+23+22+21+20=16+8+4+2+1=31

    那既然现在知道算出来long maxWorkerId = -1L ^ (-1L << 5L)中的maxWorkerId = 31,有什么含义?为什么要用左移5来算?如果你看过概述部分,请找到这段内容看看:

    5位(bit)可以表示的最大正整数是25−1=31,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

    -1L ^ (-1L << 5L)结果是31,25−1的结果也是31,所以在代码中,-1L ^ (-1L << 5L)的写法是利用位运算计算出5位能表示的最大正整数是多少

    用mask防止溢出

    有一段有趣的代码:

    sequence = (sequence + 1) & sequenceMask;

    分别用不同的值测试一下,你就知道它怎么有趣了:

    1. long seqMask = -1L ^ (-1L << 12L); //计算12位能耐存储的最大正整数,相当于:2^12-1 = 4095
    2. System.out.println("seqMask: "+seqMask);
    3. System.out.println(1L & seqMask);
    4. System.out.println(2L & seqMask);
    5. System.out.println(3L & seqMask);
    6. System.out.println(4L & seqMask);
    7. System.out.println(4095L & seqMask);
    8. System.out.println(4096L & seqMask);
    9. System.out.println(4097L & seqMask);
    10. System.out.println(4098L & seqMask);
    11. /**
    12. seqMask: 4095
    13. 1
    14. 2
    15. 3
    16. 4
    17. 4095
    18. 0
    19. 1
    20. 2
    21. */

    这段代码通过位与运算保证计算的结果范围始终是 0-4095 !

    用位运算汇总结果

    还有另外一段诡异的代码:

    1. return ((timestamp - twepoch) << timestampLeftShift) |
    2. (datacenterId << datacenterIdShift) |
    3. (workerId << workerIdShift) |
    4. sequence;

    为了弄清楚这段代码,

    首先 需要计算一下相关的值:

    1. private long twepoch = 1288834974657L; //起始时间戳,用于用当前时间戳减去这个时间戳,算出偏移量
    2. private long workerIdBits = 5L; //workerId占用的位数:5
    3. private long datacenterIdBits = 5L; //datacenterId占用的位数:5
    4. private long maxWorkerId = -1L ^ (-1L << workerIdBits); // workerId可以使用的最大数值:31
    5. private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // datacenterId可以使用的最大数值:31
    6. private long sequenceBits = 12L;//序列号占用的位数:12
    7. private long workerIdShift = sequenceBits; // 12
    8. private long datacenterIdShift = sequenceBits + workerIdBits; // 12+5 = 17
    9. private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; // 12+5+5 = 22
    10. private long sequenceMask = -1L ^ (-1L << sequenceBits);//4095
    11. private long lastTimestamp = -1L;

    其次 写个测试,把参数都写死,并运行打印信息,方便后面来核对计算结果:

    1. //---------------测试---------------
    2. public static void main(String[] args) {
    3. long timestamp = 1505914988849L;
    4. long twepoch = 1288834974657L;
    5. long datacenterId = 17L;
    6. long workerId = 25L;
    7. long sequence = 0L;
    8. System.out.printf(" timestamp: %d ",timestamp);
    9. System.out.printf("twepoch: %d ",twepoch);
    10. System.out.printf("datacenterId: %d ",datacenterId);
    11. System.out.printf("workerId: %d ",workerId);
    12. System.out.printf("sequence: %d ",sequence);
    13. System.out.println();
    14. System.out.printf("(timestamp - twepoch): %d ",(timestamp - twepoch));
    15. System.out.printf("((timestamp - twepoch) << 22L): %d ",((timestamp - twepoch) << 22L));
    16. System.out.printf("(datacenterId << 17L): %d " ,(datacenterId << 17L));
    17. System.out.printf("(workerId << 12L): %d ",(workerId << 12L));
    18. System.out.printf("sequence: %d ",sequence);
    19. long result = ((timestamp - twepoch) << 22L) |
    20. (datacenterId << 17L) |
    21. (workerId << 12L) |
    22. sequence;
    23. System.out.println(result);
    24. }
    25. /** 打印信息:
    26. timestamp: 1505914988849
    27. twepoch: 1288834974657
    28. datacenterId: 17
    29. workerId: 25
    30. sequence: 0
    31. (timestamp - twepoch): 217080014192
    32. ((timestamp - twepoch) << 22L): 910499571845562368
    33. (datacenterId << 17L): 2228224
    34. (workerId << 12L): 102400
    35. sequence: 0
    36. 910499571847892992
    37. */

    代入位移的值得之后,就是这样:

    1. return ((timestamp - 1288834974657) << 22) |
    2. (datacenterId << 17) |
    3. (workerId << 12) |
    4. sequence;

    对于尚未知道的值,我们可以先看看概述 中对SnowFlake结构的解释,再代入在合法范围的值(windows系统可以用计算器方便计算这些值的二进制),来了解计算的过程。
    当然,由于我的测试代码已经把这些值写死了,那直接用这些值来手工验证计算结果即可:

    1. long timestamp = 1505914988849L;
    2. long twepoch = 1288834974657L;
    3. long datacenterId = 17L;
    4. long workerId = 25L;
    5. long sequence = 0L;
    1. 设:timestamp = 1505914988849,twepoch = 1288834974657
    2. 1505914988849 - 1288834974657 = 217080014192 (timestamp相对于起始时间的毫秒偏移量),其(a)二进制左移22位计算过程如下:
    3. |<--这里开始左右22位 ‭
    4. 00000000 00000000 000000|00 00110010 10001010 11111010 00100101 01110000 // a = 217080014192
    5. 00001100 10100010 10111110 10001001 01011100 00|000000 00000000 00000000 // a左移22位后的值(la)
    6. |<--这里后面的位补0

    1. 设:datacenterId = 17,其(b)二进制左移17位计算过程如下:
    2. |<--这里开始左移17
    3. 00000000 00000000 0|000000000000000 00000000 00000000 00000000 00010001 // b = 17
    4. 00000000 00000000 00000000 00000000 00000000 0010001|0 00000000 00000000 // b左移17位后的值(lb)
    5. |<--这里后面的位补0

    1. 设:workerId = 25,其(c)二进制左移12位计算过程如下:
    2. |<--这里开始左移12
    3. 00000000 0000|0000 00000000 00000000 00000000 00000000 00000000 00011001// c = 25
    4. 00000000 00000000 00000000 00000000 00000000 00000001 1001|0000 00000000// c左移12位后的值(lc)
    5. |<--这里后面的位补0

    1. 设:sequence = 0,其二进制如下:
    2. 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000// sequence = 0

    现在知道了每个部分左移后的值(la,lb,lc),代码可以简化成下面这样去理解:

    1. return ((timestamp - 1288834974657) << 22) |
    2. (datacenterId << 17) |
    3. (workerId << 12) |
    4. sequence;
    5. -----------------------------
    6. |
    7. |简化
    8. |/
    9. -----------------------------
    10. return (la) |
    11. (lb) |
    12. (lc) |
    13. sequence;

    上面的管道符号|在Java中也是一个位运算符。其含义是:
    x的第n位和y的第n位 只要有一个是1,则结果的第n位也为1,否则为0,因此,我们对四个数的位或运算如下:

    1. 1 | 41 | 5 | 5 | 12
    2. 0|0001100 10100010 10111110 10001001 01011100 00|00000|0 0000|0000 00000000 //la
    3. 0|0000000 00000000 00000000 00000000 00000000 00|10001|0 0000|0000 00000000 //lb
    4. 0|0000000 00000000 00000000 00000000 00000000 00|00000|1 1001|0000 00000000 //lc
    5. or 0|0000000 00000000 00000000 00000000 00000000 00|00000|0 0000|‭0000 00000000//sequence
    6. ------------------------------------------------------------------------------------------
    7. 0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|‭0000 00000000//结果:910499571847892992

    结果计算过程:
    1) 从至左列出1出现的下标(从0开始算):

    1. 0000 1 1 00 1 0 1 000 1 0 1 0 1 1 1 1 1 0 1 000 1 00 1 0 1 0 1 1 1 0000 1 000 1 1 1 00 10000 0000 0000
    2. 59 58 55 53 49 47 45 44 43 42 41 39 35 32 30 28 27 26 21 17 16 15 12

    2) 各个下标作为2的幂数来计算,并相加:

    259+258+255+253+249+247+245+244+243+242+241+239+235+232+230+228+227+226+221+217+216+215+22

    1. 2^59} : 576460752303423488
    2. 2^58} : 288230376151711744
    3. 2^55} : 36028797018963968
    4. 2^53} : 9007199254740992
    5. 2^49} : 562949953421312
    6. 2^47} : 140737488355328
    7. 2^45} : 35184372088832
    8. 2^44} : 17592186044416
    9. 2^43} : 8796093022208
    10. 2^42} : 4398046511104
    11. 2^41} : 2199023255552
    12. 2^39} : 549755813888
    13. 2^35} : 34359738368
    14. 2^32} : 4294967296
    15. 2^30} : 1073741824
    16. 2^28} : 268435456
    17. 2^27} : 134217728
    18. 2^26} : 67108864
    19. 2^21} : 2097152
    20. 2^17} : 131072
    21. 2^16} : 65536
    22. 2^15} : 32768
    23. + 2^12} : 4096
    24. ----------------------------------------
    25. 910499571847892992

    计算截图:

    跟测试程序打印出来的结果一样,手工验证完毕!

    观察

    1. 1 | 41 | 5 | 5 | 12
    2. 0|0001100 10100010 10111110 10001001 01011100 00| | | //la
    3. 0| |10001| | //lb
    4. 0| | |1 1001| //lc
    5. or 0| | | |‭0000 00000000//sequence
    6. ------------------------------------------------------------------------------------------
    7. 0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|‭0000 00000000//结果:910499571847892992

    上面的64位我按1、41、5、5、12的位数截开了,方便观察。

    • 纵向观察发现:

      <ul style="margin-left:3em;"><li>在41位那一段,除了la一行有值,其它行(lb、lc、sequence)都是0,(我爸其它)</li>
      	<li>在左起第一个5位那一段,除了lb一行有值,其它行都是0</li>
      	<li>在左起第二个5位那一段,除了lc一行有值,其它行都是0</li>
      	<li>按照这规律,如果sequence是0以外的其它值,12位那段也会有值的,其它行都是0</li>
      </ul></li>
      <li>
      <p><code>横向</code>观察发现:</p>
      
      <ul style="margin-left:3em;"><li>在la行,由于左移了5+5+12位,5、5、12这三段都补0了,所以la行除了41那段外,其它肯定都是0</li>
      	<li>同理,lb、lc、sequnece行也以此类推</li>
      	<li>正因为左移的操作,使四个不同的值移到了SnowFlake理论上相应的位置,然后四行做<code>位或</code>运算(只要有1结果就是1),就把4段的二进制数合并成一个二进制数。</li>
      </ul></li>
      

    结论:
    所以,在这段代码中

    1. return ((timestamp - 1288834974657) << 22) |
    2. (datacenterId << 17) |
    3. (workerId << 12) |
    4. sequence;

    左移运算是为了将数值移动到对应的段(41、5、5,12那段因为本来就在最右,因此不用左移)。

    然后对每个左移后的值(la、lb、lc、sequence)做位或运算,是为了把各个短的数据合并起来,合并成一个二进制数。

    最后转换成10进制,就是最终生成的id

    扩展

    在理解了这个算法之后,其实还有一些扩展的事情可以做:

    1. 根据自己业务修改每个位段存储的信息。算法是通用的,可以根据自己需求适当调整每段的大小以及存储的信息。
    2. 解密id,由于id的每段都保存了特定的信息,所以拿到一个id,应该可以尝试反推出原始的每个段的信息。反推出的信息可以帮助我们分析。比如作为订单,可以知道该订单的生成日期,负责处理的数据中心等等。

    原文地址:https://blog.csdn.net/Ka_Ka314/article/details/79594485

  • 相关阅读:
    误删表空间处理办法
    一步步开发网站系列-网站界面
    webstorm ftp发布问题
    TP5接受Vue跨域请求
    tp5上传图片添加永久素材到微信公众号
    将博客搬至CSDN
    swoole http_server 多进程并使用多进程处理消息
    高并发下,php与redis实现的抢购、秒杀功能
    SVN服务器搭建
    web服务器安全笔记
  • 原文地址:https://www.cnblogs.com/jpfss/p/11506996.html
Copyright © 2011-2022 走看看