zoukankan      html  css  js  c++  java
  • 深度研究:回归模型评价指标R2_score

    回归模型的性能的评价指标主要有:RMSE(平方根误差)、MAE(平均绝对误差)、MSE(平均平方误差)、R2_score。但是当量纲不同时,RMSE、MAE、MSE难以衡量模型效果好坏。这就需要用到R2_score,实际使用时,会遇到许多问题,今天我们深度研究一下。

    预备知识

    搞清楚R2_score计算之前,我们还需要了解几个统计学概念。

    若用$y_i$表示真实的观测值,用$ar{y}$表示真实观测值的平均值,用$hat{y_i}$表示预测值,则:

    回归平方和:SSR

    $$SSR = sum_{i=1}^{n}(hat{y_i} - ar{y})^2$$

    即估计值与平均值的误差,反映自变量与因变量之间的相关程度的偏差平方和

    残差平方和:SSE

    $$SSE = sum_{i=1}^{n}(y_i-hat{y_i} )^2$$

    即估计值与真实值的误差,反映模型拟合程度

    总离差平方和:SST
    $$SST =SSR + SSE= sum_{i=1}^{n}(y_i - ar{y})^2$$

    即平均值与真实值的误差,反映与数学期望的偏离程度

    R2_score计算公式

    R^2 score,即决定系数,反映因变量的全部变异能通过回归关系被自变量解释的比例。计算公式:
    $$R^2=1-frac{SSE}{SST}$$

    $$R^2 = 1 - frac{sum_{i=1}^{n} (y_i - hat{y}_i)2}{sum_{i=1}{n} (y_i - ar{y})^2}$$
    进一步化简
    $$R^2 = 1 - frac{sumlimits_i(y_i - y_i)^2 / n}{sumlimits_i(y_i - hat{y})^2 / n} = 1 - frac{RMSE}{Var}$$
    分子就变成了常用的评价指标均方误差MSE,分母就变成了方差。

    对于$R^2$可以通俗地理解为使用均值作为误差基准,看预测误差是否大于或者小于均值基准误差。

    R2_score = 1,样本中预测值和真实值完全相等,没有任何误差,表示回归分析中自变量对因变量的解释越好。

    R2_score = 0。此时分子等于分母,样本的每项预测值都等于均值。

    R2_score不是r的平方,也可能为负数(分子>分母),模型等于盲猜,还不如直接计算目标变量的平均值。

    r2_score使用方法

    根据公式,我们可以写出r2_score实现代码

    1- mean_squared_error(y_test,y_preditc)/ np.var(y_test)
    

    也可以直接调用sklearn.metrics中的r2_score

    sklearn.metrics.r2_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average')
    #y_true:观测值
    #y_pred:预测值
    #sample_weight:样本权重,默认None
    #multioutput:多维输入输出,可选‘raw_values’, ‘uniform_average’, ‘variance_weighted’或None。默认为’uniform_average’;
    raw_values:分别返回各维度得分
    uniform_average:各输出维度得分的平均
    variance_weighted:对所有输出的分数进行平均,并根据每个输出的方差进行加权。
    

    sklearn.metrics.r2_score使用方法

    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn import datasets, linear_model
    from sklearn.metrics import r2_score
    #导入数据
    diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)
    diabetes_X = diabetes_X[:, np.newaxis, 2]
    #划分测试集验证集
    diabetes_X_train = diabetes_X[:-20]
    diabetes_X_test = diabetes_X[-20:]
    diabetes_y_train = diabetes_y[:-20]
    diabetes_y_test = diabetes_y[-20:]
    # 创建线性回归模型
    regr = linear_model.LinearRegression()
    # 训练模型
    regr.fit(diabetes_X_train, diabetes_y_train)
    # 预测
    diabetes_y_pred = regr.predict(diabetes_X_test)
    # 模型评价
    print('r2_score: %.2f'
          % r2_score(diabetes_y_test, diabetes_y_pred))
    # 绘制预测效果图
    plt.scatter(diabetes_X_test, diabetes_y_test,  color='black')
    plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
    plt.xticks(())
    plt.yticks(())
    plt.show()
    

    r2_score: 0.47

    r2_score偏小,预测效果一般。

    注意事项

    1、$R^2$ 一般用在线性模型中(非线性模型也可以用)

    2、$R^2$不能完全反映模型预测能力的高低,某个实际观测的自变量取值范围很窄,但此时所建模型的R2 很大,但这并不代表模型在外推应用时的效果肯定会很好。

    3、数据集的样本越大,R²越大,因此,不同数据集的模型结果比较会有一定的误差,此时可以使用Adjusted R-Square (校正决定系数),能对添加的非显著变量给出惩罚:

    $$R2_{ ext{Adj}}=1-(1-R2)frac{n-p-1}{n-1}$$
    n是样本的个数,p是变量的个数

    Reference

    https://scikit-learn.org
    https://zhuanlan.zhihu.com/p/36305931
    https://www.jianshu.com/p/9ee85fdad150
    https://blog.csdn.net/Dear_D/article/details/86144696
    https://blog.csdn.net/shy19890510/article/details/79375062

  • 相关阅读:
    教育网玩QQ游戏解决办法
    国家重点实验室分布<转>
    MySQL存储过程错误No data zero rows fetched, selected, or processed
    安装Oracle Developer后 pl sql无法使用
    Jsp开发入门
    开源项目MiniOA协同办公系统介绍
    JavaScript实现网页单击事件
    (转)普及基础知识一
    “人脸识别程序”总结
    (转)如何加速Altera的EDA工具? (IC Design) (Quartus II) (Nios II) (SOPC Builder)
  • 原文地址:https://www.cnblogs.com/jpld/p/12022123.html
Copyright © 2011-2022 走看看