zoukankan      html  css  js  c++  java
  • Hermite (埃尔米特)曲线

    Hermite 曲线

      已知曲线的两个端点坐标P0、P1,和端点处的切线R0、R1,确定的一条曲线。

    参数方程

      1. 几何形式

      

      2. 矩阵形式

       

      3. 推导

        

      

      

      

      

      

    例子分析

      

      如上图有四个点,假如P0、P2是端点,那么向量R0=(P1-P0),R1=(P3-P2),将数据带入调和函数,即求得曲线。

      在程序中,我们通常会使用特殊方法处理顶点之间的关系。

      

      图中含有3个顶点,我们把每挨着的两个顶点看做是一条Hermite曲线,P0和P1是两个端点,那么现在,我们如何求得R1呢? 我们现在构建连个参考点F1,F2。

        令  F1 = P0;   F2 = P2;  

        那么 R1 = P1-F1;  R2 = F2-P1;

      然后将此值带入曲线函数,即可为求得的曲线。  

    程序代码

    该代码是Unity脚本代码:

      1. 实现编辑器闭合曲线和非闭合曲线的绘制;

      2. 运行脚本,可以实现物体跟随曲线路径移动,可以勾选旋转跟随与不跟随;

      3. 如果不进行自动跟随曲线路径,可以修改时间值,移动物体。

    using UnityEngine;
    using System.Collections;
    using System.Collections.Generic;
    public class HermitCurve : Curve_Root {
    
        public Transform CurveParent;
        public int lineCount;
        private List<NodePath> nodePath;
        public float smoothFactor = 2.0f;
    
        private Transform[] transforms;
        private Vector3[] node;
        public float Speed = 10.0f;
    
        Vector3 curPos;
        Vector3 nextPos;
        Quaternion curRotate;
        Quaternion nextRotate;
        float moveTime;
        float curTime;
        public GameObject Tar;
        int index;
        private Transform T;
    
        public float time;
    
    
        /// <summary>
        /// 数据校正
        /// </summary>
        void DadaCorrection()
        {
            //根节点验证
            if (CurveParent == null)
            {
                Debug.LogError("Please add curve the root node.");
                return;
            }
    
            //修正平滑因子: 2时,较为理想。
            smoothFactor = smoothFactor >= 10.0f ? 10.0f : smoothFactor;
            smoothFactor = smoothFactor <= 1.0f ? 1.0f : smoothFactor;
        }
    
        /// <summary>
        /// 计算路径节点
        /// </summary>
        void ComputeNode()
        {
            //将节点添加入链表
            Component[] mTrans = CurveParent.GetComponentsInChildren(typeof(Transform));//物体和子物体的Trans
            if (mTrans.Length - 1 < 2)
            {
                Debug.LogError("Please add at least two points.");
                return;
            }
    
            //非闭合曲线与闭合曲线的顶点时间计算:非闭合曲线,最后个顶点的时间为1.0,闭合曲线的最后个顶点的时间为倒数第二个顶点,因为他的最后个点是原点。
            float t;
            if (closedCurve)
            {
                t = 1.0f / (mTrans.Length - 1);
                nodePath = new List<NodePath>();
                for (int i = 1; i < mTrans.Length; i++)//根节点不参与路径节点的计算
                {
                    nodePath.Add(new NodePath(mTrans[i].transform.position, (i - 1) * t));
                }
                //闭合曲线完整的节点
                AddClosedCurveNode();
            }
            else
            {
                t = 1.0f / (mTrans.Length - 2);
                nodePath = new List<NodePath>();
                for (int i = 1; i < mTrans.Length; i++)//根节点不参与路径节点的计算
                {
                    nodePath.Add(new NodePath(mTrans[i].transform.position, (i - 1) * t));
                }
                //非闭合曲线完整的节点
                AddCurveNode();
            }
        }
    
    
        // Use this for initialization
        void Start () {
            
            DadaCorrection();
    
            ComputeNode();
    
            node = new Vector3[lineCount+1];
            //Vector3 start = nodePath[1].point;
            //Vector3 end;
    
            node[0] = nodePath[1].point;
            Vector3 end;
            //绘制节点
            for (int i = 1; i <= lineCount; i++)
            {
                float ti = i / (float)lineCount;
                end = GetHermitAtTime(ti);
                if (node != null)
                {
                    node[i] = end;
                }
            }
      
            T = new GameObject().transform;
            
            curPos = node[0];
            nextPos = node[1];
            moveTime = (nextPos - curPos).magnitude / Speed;
    
            Tar.transform.position = curPos;
            Tar.transform.transform.LookAt(nextPos);
            curRotate = Tar.transform.rotation;
            T.position = node[1];
            T.LookAt(node[2]);
            nextRotate = T.rotation;
            curTime = 0;
            index = 1;
        }
        
        // Update is called once per frame
        void Update () {
    
            if (AutoCurve)
            {
                if (moveTime > curTime)
                {
                    Tar.transform.position = Vector3.Lerp(curPos, nextPos, curTime / moveTime);
                    if (AutoRotate)
                    {
                        Tar.transform.rotation = Quaternion.Slerp(curRotate, nextRotate, curTime / moveTime);
                    }
    
                    curTime += Time.deltaTime;
                }
                else
                {
                    if (closedCurve)
                    {
                        index = ((index + 1) % (lineCount + 1) == 0) ? 0 : index + 1;
                    }
                    else
                    {
                        index = ((index + 1) % (lineCount+1) == 0) ? index : index + 1;
                    }
                    curPos = nextPos;
                    nextPos = node[index];
    
                    curTime = 0;
                    moveTime = (nextPos - curPos).magnitude / Speed;
    
                    T.position = node[index];
                    curRotate = nextRotate;
    
                    if (closedCurve)
                    {
                        int c1;
                        if (index == node.Length-1)
                        {
                            c1 = 0;
                        }
                        else
                        {
                            c1 = index + 1;
                        }
                        T.LookAt(node[c1]);
                    }
                    else
                    {
                        int c1;
                        if (index == node.Length - 1)
                        {
                            c1 = 0;
                        }
                        else
                        {
                            c1 = index + 1;
                            T.LookAt(node[c1]);
                        }
                    }
    
                    nextRotate = T.rotation;
                }
            }
            else
            {
                if (closedCurve)
                {
                    if (AutoRotate)
                    {
                        time = time > 1.0f ? 0.0f : time;
                        time = time < 0.0f ? 1.0f : time;
                        Vector3 cur = GetHermitAtTime(time);
                        Tar.transform.position = cur;
    
                        float del = 1.0f / lineCount;
                        Vector3 next0 = GetHermitAtTime(time + del);
                        Tar.transform.LookAt(next0);
                    }
                    else
                    {
                        time = time > 1.0f ? 0.0f : time;
                        time = time < 0.0f ? 1.0f : time;
                        Vector3 cur = GetHermitAtTime(time);
                        Tar.transform.position = cur;
                    }
                }
                else
                {
                    if (AutoRotate)
                    {
                        time = time > 1.0f ? 1.0f : time;
                        time = time < 0.0f ? 0.0f : time;
                        Vector3 cur = GetHermitAtTime(time);
                        Tar.transform.position = cur;
    
                        float del = 1.0f / lineCount;
                        Vector3 next0 = GetHermitAtTime(time + del);
    
                        Tar.transform.LookAt(next0);
                    }
                    else
                    {
                        time = time > 1.0f ? 1.0f : time;
                        time = time < 0.0f ? 0.0f : time;
                        Vector3 cur = GetHermitAtTime(time);
                        Tar.transform.position = cur;
                    }
                }
    
            }
            
        }
    
    
    
        /// <summary>
        /// 绘制曲线
        /// </summary>
        void DrawCurve()
        {
            if (closedCurve)
            {
                Vector3 start = nodePath[1].point;
                Vector3 end;
    
                Gizmos.color = _Color;
                //绘制节点
                for (int i = 1; i < lineCount; i++)
                {
                    float time = i / (float)lineCount;
                    end = GetHermitAtTime(time);
                    //Debug.Log(end);
                    Gizmos.DrawLine(start, end);
    
                    start = end;
                }
                Gizmos.DrawLine(start, nodePath[nodePath.Count - 2].point);
            }
            else
            {
                Vector3 start = nodePath[1].point;
                Vector3 end;
    
                Gizmos.color = _Color;
                //绘制节点
                for (int i = 1; i < lineCount; i++)
                {
                    float time = i / (float)lineCount;
                    end = GetHermitAtTime(time);
                    //Debug.Log(end);
                    Gizmos.DrawLine(start, end);
                    start = end;
                }
                Gizmos.DrawLine(start, nodePath[nodePath.Count - 2].point);
            }
        }
    
        /// <summary>
        /// 在Scene场景中,绘制Hermite曲线
        /// </summary>
        void OnDrawGizmos()
        {
            /*数据校正*/
            DadaCorrection();
            /*计算顶点*/
            ComputeNode();
            /*计算曲线*/
            DrawCurve();
        }
    
        /// <summary>
        /// 1. 非闭合曲线
        /// </summary>
        public void AddCurveNode()
        {
            nodePath.Insert(0, nodePath[0]);
            nodePath.Add(nodePath[nodePath.Count - 1]);
        }
    
        /// <summary>
        /// 2. 闭合曲线
        /// </summary>
        public void AddClosedCurveNode()
        {
            //nodePath.Insert(0, nodePath[0]);
            nodePath.Add(new NodePath(nodePath[0]));
            nodePath[nodePath.Count - 1].time = 1.0f;
    
            Vector3 vInitDir = (nodePath[1].point - nodePath[0].point).normalized;
            Vector3 vEndDir = (nodePath[nodePath.Count - 2].point - nodePath[nodePath.Count - 1].point).normalized;
            float firstLength = (nodePath[1].point - nodePath[0].point).magnitude;
            float lastLength = (nodePath[nodePath.Count - 2].point - nodePath[nodePath.Count - 1].point).magnitude;
    
            NodePath firstNode = new NodePath(nodePath[0]);
            firstNode.point = nodePath[0].point + vEndDir * firstLength;
    
            NodePath lastNode = new NodePath(nodePath[nodePath.Count - 1]);
            lastNode.point = nodePath[0].point + vInitDir * lastLength;
    
            nodePath.Insert(0, firstNode);
            nodePath.Add(lastNode); 
        }
    
        /// <summary>
        /// 通过节点段数的时间大小,获取每段节点
        /// </summary>
        /// <param name="t"></param>
        /// <returns></returns>
        public Vector3 GetHermitAtTime(float t)
        {
            //Debug.Log(t);
            int k;
            //最后一个顶点
            if (t >= nodePath[nodePath.Count - 2].time)
            {
                return nodePath[nodePath.Count - 2].point;
            }
            for (k = 1; k < nodePath.Count-2; k++)
            {
                if (nodePath[k].time > t)
                    break;
            }
    
            k = k - 1;
            float param = (t - nodePath[k].time) / (nodePath[k+1].time - nodePath[k].time);
            return GetHermitNode(k, param);
        }
    
        /// <summary>
        /// Herimite曲线:获取节点
        /// </summary>
        /// <param name="index">节点最近的顶点</param>
        /// <param name="t"></param>
        /// <returns></returns>
        public Vector3 GetHermitNode(int index,float t)
        {
            Vector3 v;
            Vector3 P0 = nodePath[index - 1].point;
            Vector3 P1 = nodePath[index].point;
            Vector3 P2 = nodePath[index + 1].point;
            Vector3 P3 = nodePath[index + 2].point;
    
            //调和函数
            float h1 = 2 * t * t * t - 3 * t * t + 1;
            float h2 = -2 * t * t * t + 3 * t * t;
            float h3 = t * t * t - 2 * t * t + t;
            float h4 = t * t * t - t * t;
    
            v = h1 * P1 + h2 * P2 + h3 * (P2 - P0) / smoothFactor + h4 * (P3 - P1) / smoothFactor;
            //Debug.Log(index + "  "+ t+"  "+v);
            return v;
        }
    }
    
    
    /// <summary>
    /// 节点类
    /// </summary>
    public class NodePath
    {
        public Vector3 point;
        public float time;
    
        public NodePath(Vector3 v,float t)
        {
            point = v;
            time = t;
        }
    
        public NodePath(NodePath n)
        {
            point = n.point;
            time = n.time;
        }
    }
    View Code

    基类代码

    using UnityEngine;
    using System.Collections;
    
    public class Curve_Root : MonoBehaviour {
    
        //曲线是否为闭合曲线
        public bool closedCurve = false;
    
        //曲线的颜色
        public Color _Color = Color.white;
    
        //自动跟随路径
        public bool AutoCurve = false;
    
        //旋转跟随
        public bool AutoRotate = false;
    }
    View Code

     路径漫游

      在曲线函数中,参数t取值[0,1],将曲线进行分段。那么能够计算出每一个点的位置。因此,在路径漫游中,我们从原点出发,将t的增量作为下一个点位置,进行插值移动。就实现了路径漫游,同时进行朝向下一个顶点旋转,就可以使看的方向随着曲线变化。

    Unity 3D 项目工程

    http://download.csdn.net/detail/familycsd000/9365859

      

      

  • 相关阅读:
    Java的自动拆箱和装箱
    记录一次买阿里云服务器、建站的经验
    java中的位运算符
    java String拼接时候的一个小问题
    java获取各类容器和数组的长度
    java多线程:循环屏障
    Spring框架10:spring编程式事务控制
    Spring框架9:spring实现声明式事务控制
    Spring框架8:spring使用AOP实现事务控制
    C++ 中的bind
  • 原文地址:https://www.cnblogs.com/jqm304775992/p/5044728.html
Copyright © 2011-2022 走看看