没有想到若k为8,长度为6的字符串也可以满足,一直傻逼了以为是因数和倍数的关系
题意:给一个n长度的只包含小写英文字母的字符串,表示每个字符有多少个。再给一个k。让你用这些字符串组成一个任意长度的环字符串(长度小于等于n),使得其旋转任意k次得到的字符串不变。求这个字符串的最长长度。
思路:设周期为T,T为字符串长度len和k的最大公约数,len中包括len/T个相同的字符串,遍历26个英文字符,判断即可。
n为2e3,完全不会超时。
#include <iostream> #include <cmath> #include <cstdio> #include <cstring> #include <string> #include <map> #include <iomanip> #include <algorithm> #include <queue> #include <stack> #include <set> #include <vector> // #include <bits/stdc++.h> #define fastio ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0); #define sp ' ' #define endl ' ' #define inf 0x3f3f3f3f; #define FOR(i,a,b) for( int i = a;i <= b;++i) #define bug cout<<"--------------"<<endl #define P pair<int, int> #define fi first #define se second #define pb(x) push_back(x) #define ppb() pop_back() #define mp(a,b) make_pair(a,b) #define ms(v,x) memset(v,x,sizeof(v)) #define rep(i,a,b) for(int i=a;i<=b;i++) #define repd(i,a,b) for(int i=a;i>=b;i--) #define sca3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c)) #define sca2(a,b) scanf("%d %d",&(a),&(b)) #define sca(a) scanf("%d",&(a)); #define sca3ll(a,b,c) scanf("%lld %lld %lld",&(a),&(b),&(c)) #define sca2ll(a,b) scanf("%lld %lld",&(a),&(b)) #define scall(a) scanf("%lld",&(a)); using namespace std; typedef long long ll; ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll powmod(ll a, ll b, ll mod){ll sum = 1;while (b) {if (b & 1) {sum = (sum * a) % mod;b--;}b /= 2;a = a * a % mod;}return sum;} const double Pi = acos(-1.0); const double epsilon = Pi/180.0; const int maxn = 2e5+10; int cnt[30]; char c[2100]; int main() { //freopen("input.txt", "r", stdin); int _; scanf("%d",&_); while(_--) { int n,k; cin>>n>>k; int ans = 0; cin>>c+1; int len = strlen(c+1); rep(i,1,len) { cnt[c[i]-'a']++; } /* rep(i,0,25){ cout<<cnt[i]<<sp; } cout<<endl;*/ rep(len,1,n){ int sum = 0; int T = gcd(len,k); int nub = len/T; rep(i,0,25){ int tmp = cnt[i]/nub; sum += tmp; } // cout<<sum<<sp<<T<<endl; if(sum >= T){ ans = len; } } cout<<ans<<endl; rep(i,0,n){ c[i] = '