题意:给了n个数,求任意一对数的lcm组成的数组的gcd。
思路:对每个数质因子分解,把每个数出现的次数存入数组中。
把每个质因子出现的次数从小进行排序。
对于质因子p。
如果p出现了n次,则选择第二小的幂次k,贡献即为pk
如果p出现了n-1次,则选择第一小的幂次k,贡献即为pk
出现小于n-1次,则没贡献。
#include <iostream> #include <cmath> #include <cstdio> #include <cstring> #include <string> #include <map> #include <iomanip> #include <algorithm> #include <queue> #include <stack> #include <set> #include <vector> // #include <bits/stdc++.h> #define fastio ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0); #define sp ' ' #define endl ' ' #define inf 0x3f3f3f3f; #define FOR(i,a,b) for( int i = a;i <= b;++i) #define bug cout<<"--------------"<<endl #define P pair<int, int> #define fi first #define se second #define pb(x) push_back(x) #define ppb() pop_back() #define mp(a,b) make_pair(a,b) #define ms(v,x) memset(v,x,sizeof(v)) #define rep(i,a,b) for(int i=a;i<=b;i++) #define repd(i,a,b) for(int i=a;i>=b;i--) #define sca3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c)) #define sca2(a,b) scanf("%d %d",&(a),&(b)) #define sca(a) scanf("%d",&(a)); #define sca3ll(a,b,c) scanf("%lld %lld %lld",&(a),&(b),&(c)) #define sca2ll(a,b) scanf("%lld %lld",&(a),&(b)) #define scall(a) scanf("%lld",&(a)); using namespace std; typedef long long ll; ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll powmod(ll a, ll b, ll mod){ll sum = 1;while (b) {if (b & 1) {sum = (sum * a) % mod;b--;}b /= 2;a = a * a % mod;}return sum;} const double Pi = acos(-1.0); const double epsilon = Pi/180.0; const int maxn = 2e5+10; vector<int>v[maxn]; int main() { //freopen("input.txt", "r", stdin); int n; cin>>n; rep(i,1,n){ int x; cin>>x; for(int j = 2;j*j <= x; ++j){ int cnt = 0; while(x % j == 0){ x /= j; cnt++; } if(cnt) v[j].pb(cnt); } if(x > 1) v[x].pb(1); } ll sum = 1; // cout<<v[2].size()<<sp<<v[5].size()<<endl; rep(i,2,200000){ if(v[i].size() == n){ sort(v[i].begin(), v[i].end()); sum *= pow(i,v[i][1]); } else if(v[i].size() == n-1){ sort(v[i].begin(), v[i].end()); sum *= pow(i,v[i][0]); } // cout<<sum<<endl; } cout<<sum<<endl; }