zoukankan      html  css  js  c++  java
  • JVM 垃圾收集(转)

      转自:深入理解JAVA虚拟机

      一.哪些内存需要回收以及什么时候回收

      1.引用计数

      给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。

      但是,至少主流的Java虚拟机里面没有选用引用计数算法来管理内存,其中最主要的原因是它很难解决对象之间相互循环引用的问题。

    举个简单的例子,请看代码清单3-1中的testGC()方法:对象objA和objB都有字段instance,赋值令objA.instance = objB及objB.instance = objA,除此之外,这两个对象再无任何引用,实际上这两个对象已经不可能再被访问,但是它们因为互相引用着对方,导致它们的引用计数都不为0,于是引用计数算法无法通知GC收集器回收它们。

      2.可达性分析算法

      基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。

      在Java语言中,可作为GC Roots的对象包括下面几种:

      *虚拟机栈(栈帧中的本地变量表)中引用的对象。

      *方法区中类静态属性引用的对象。

      *方法区中常量引用的对象。

      *本地方法栈中JNI(即一般说的Native方法)引用的对象。

      3.引用类型

      强引用就是指在程序代码之中普遍存在的,类似“Object obj = new Object()”这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。

      软引用是用来描述一些还有用但并非必需的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中进行第二次回收。如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2之后,提供了SoftReference类来实现软引用。

      弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2之后,提供了WeakReference类来实现弱引用。

      虚引用也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2之后,提供了PhantomReference类来实现虚引用。

      4.永久代收集

      很多人认为方法区(或者HotSpot虚拟机中的永久代)是没有垃圾收集的,Java虚拟机规范中确实说过可以不要求虚拟机在方法区实现垃圾收集,而且在方法区中进行垃圾收集的“性价比”一般比较低:在堆中,尤其是在新生代中,常规应用进行一次垃圾收集一般可以回收70%~95%的空间,而永久代的垃圾收集效率远低于此。

      永久代的垃圾收集主要回收两部分内容:废弃常量和无用的类(Class)。回收废弃常量与回收Java堆中的对象非常类似。以常量池中字面量的回收为例,假如一个字符串“abc”已经进入了常量池中,但是当前系统没有任何一个String对象是叫做“abc”的,换句话说,就是没有任何String对象引用常量池中的“abc”常量,也没有其他地方引用了这个字面量,如果这时发生内存回收,而且必要的话,这个“abc”常量就会被系统清理出常量池。常量池中的其他类(接口)、方法、字段的符号引用也与此类似。

      判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面3个条件才能算是“无用的类”:

      *该类所有的实例都已经被回收,也就是Java堆中不存在该类的任何实例。

      *加载该类的ClassLoader已经被回收。

      *该类对应的java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

      5.HotSpot判断对象和收集时间选取

      “一致性”的意思是指在整个分析期间整个执行系统看起来就像被冻结在某个时间点上,不可以出现分析过程中对象引用关系还在不断变化的情况,该点不满足的话分析结果准确性就无法得到保证。这点是导致GC进行时必须停顿所有Java执行线程(Sun将这件事情称为“Stop The World”)的其中一个重要原因。

      使用OopMap的数据结构来达到这个目的的,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也会在特定的位置记录下栈和寄存器中哪些位置是引用。这样,GC在扫描时就可以直接得知这些信息了。

      HotSpot也的确没有为每条指令都生成OopMap(全部生成消耗太大),只是在“特定的位置”记录了这些信息,这些位置称为安全点(Safepoint),即程序执行时并非在所有地方都能停顿下来开始GC,只有在到达安全点时才能暂停。“长时间执行”的最明显特征就是指令序列复用,例如方法调用、循环跳转、异常跳转等,所以具有这些功能的指令才会产生Safepoint。

      抢先式中断(Preemptive Suspension)和主动式中断(Voluntary Suspension)。

      其中抢先式中断不需要线程的执行代码主动去配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它“跑”到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程从而响应GC事件。

      而主动式中断的思想是当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方。

      线程处于Sleep状态或者Blocked状态就是Safe Region,JVM要发起GC时,就不用管标识自己为Safe Region状态的线程。

      二.垃圾回收算法

      1.标记-清除

      最基础的收集算法是“标记-清除”(Mark-Sweep)算法,如同它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象,之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其不足进行改进而得到的。它的主要不足有两个:一个是效率问题,标记和清除两个过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

      2.标记-复制

      为了解决效率问题,一种称为“复制”(Copying)的收集算法出现了,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为了原来的一半,未免太高了一点。

      新生代中的对象98%是“朝生夕死”的,所以并不需要按照1∶1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存会被“浪费”。

      3.标记-整理

      根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。

      在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。

      三.垃圾回收器

      

      1.Serial收集器

      这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。在客户端java中默认使用。

      2.ParNew收集器

      其实就是Serial收集器的多线程版本

      3.Parallel Scavenge收集器

      基本和ParNew一样,但特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量 = 运行用户代码时间 /(运行用户代码时间 + 垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

      4.Serial Old

      Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。客户端使用。

      5.Parallel Old

      Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。

      6.CMS(Concurrent Mark Sweep)

      一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

      CMS收集器是基于“标记—清除”算法实现的,整个过程划分为4个步骤,包括:

      初始标记(CMS initial mark)

      并发标记(CMS concurrent mark)

      重新标记(CMS remark)

      并发清除(CMS concurrent sweep)

      其中,初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

      由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

      7.G1(Garbage-First)

      在G1之前的其他收集器进行收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。

      G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。

      但是:Region不可能是孤立的。一个对象分配在某个Region中,它并非只能被本Region中的其他对象引用,而是可以与整个Java堆任意的对象发生引用关系。那在做可达性判定确定对象是否存活的时候,岂不是还得扫描整个Java堆才能保证准确性?

      在G1收集器中,Region之间的对象引用以及其他收集器中的新生代与老年代之间的对象引用,虚拟机都是使用Remembered Set来避免全堆扫描的。G1中每个Region都有一个与之对应的Remembered Set,虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中(在分代的例子中就是检查是否老年代中的对象引用了新生代中的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。

      G1的运行步骤和CMS差不多,就是最后一步是筛选回收(Live Data Counting and Evacuation)。在筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划

      四.内存分配策略

      *对象的内存分配,往大方向讲,就是在堆上分配(但也可能经过JIT编译后被拆散为标量类型并间接地栈上分配)。

      *大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

      *大对象直接进入老年代byte[]数组就是典型的大对象,比遇到一个大对象更加坏的消息就是遇到一群“朝生夕灭”的“短命大对象”,写程序的时候应当避免。这样做的目的是避免在Eden区及两个Survivor区之间发生大量的内存复制

      *长期存活的对象将进入老年代对象在Survivor区中每“熬过”一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就将会被晋升到老年代中。

      *为了能更好地适应不同程序的内存状况,虚拟机并不是永远地要求对象的年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄。

      *在发生Minor GC之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么Minor GC可以确保是安全的。

  • 相关阅读:
    Visifire正式版(v1.1)发布
    [转]PSP机能强大!已能模拟运行WINDOWS系统?
    在Silverlight+WCF中应用以角色为基础的安全模式(一)基础篇之角色为基础的安全模式简介 Virus
    C#的加密解密算法,包括Silverlight的MD5算法 Virus
    MMORPG programming in Silverlight Tutorial (10)Implement the sprite’s 2D animation (Part IV)
    Game Script: Rescue Bill Gates
    MMORPG programming in Silverlight Tutorial (9)KeyFrame Animation
    MMORPG programming in Silverlight Tutorial (5)Implement the sprite’s 2D animation (Part II)
    MMORPG programming in Silverlight Tutorial (7)Perfect animation
    MMORPG programming in Silverlight Tutorial (3)Animate the object (Part III)
  • 原文地址:https://www.cnblogs.com/jslee/p/3441881.html
Copyright © 2011-2022 走看看