题目:Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformation sequence(s) from beginWord to endWord, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the word list
For example , Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
Return
[ ["hit","hot","dot","dog","cog"], ["hit","hot","lot","log","cog"] ]
思路:
首先思路与之前一样,都是变换26*size 的次数,只不过,这次还将每次变换的字符串存入反向连接表。
但是本题有几个疑问,为什么每次都需要清除nextlevel里面的数据,因为我从一开始清除之后,万一我从后面清除呢,会不会步骤数更少。
我从一开始找到的未必是最短路径。这也是这两题的最大疑问。
代码:
class Solution { //http://46aae4d1e2371e4aa769798941cef698.devproxy.yunshipei.com/u012243115/article/details/43053527 //https://leetcode.com/problems/word-ladder-ii/ public: vector<string> tmpPath;//用于构造当前的路径 vector<vector<string> > result;//保存结果 vector<vector<string> > findLadders(string start, string end, unordered_set<string> &dict) { unordered_set<string> curLevel;//当前层次集合 unordered_set<string> nextLevel;//下一层集合 unordered_set<string> unvisited(dict);//储存还未访问的节点 unordered_map<string,unordered_set<string> >graph;//图,反向邻接表 if(unvisited.count(start)!=0) unvisited.erase(start);//不储存start,不然待会儿第一层只会不断的死循环 curLevel.insert(start);//第一层就start while(unvisited.size()>0&&curLevel.count(end)==0){ //循环进行的条件是unvisited中还有字符,或者这一层没有end for(auto iter=curLevel.begin();iter!=curLevel.end();iter++){ string curWord=*iter; for(int i=0;i<curWord.size();i++){ for(char c='a';c<'z';c++){ string tmp=curWord; if(tmp[i]==c) continue; tmp[i]=c; //如果找得到,就说明一下子能够变成某个字符,在途中构造反向图 if(unvisited.count(tmp)>0){ nextLevel.insert(tmp); graph[tmp].insert(curWord); } } } } if(nextLevel.empty()) break; //把层次遍历完,把下一层的元素删除 for(auto iter=nextLevel.begin();iter!=nextLevel.end();iter++){ unvisited.erase(*iter); } curLevel=nextLevel; nextLevel.clear(); } //如果当前层次上存在end,说明找到路径,则使用dfs从下到上构造路径。 if(curLevel.count(end)>0){ DFS_GenPath(graph,end,start); } return result; } void DFS_GenPath(unordered_map<string,unordered_set<string> >&graph,string start,string end){ tmpPath.push_back(start); if(start==end){ vector<string> tmp=tmpPath; reverse(tmp.begin(),tmp.end()); result.push_back(tmp); return; } for(auto iter=graph[start].begin();iter!=graph[start].end();iter++){ DFS_GenPath(graph,*iter,end); tmpPath.pop_back();//标准的回溯,上一句是进去,这一句是出来。 } } };