zoukankan      html  css  js  c++  java
  • OpenCv dnn模块扩展研究(1)--style transfer

    一、opencv的示例模型文件

     
    使用Torch模型【OpenCV对各种模型兼容并包,起到胶水作用】,
    下载地址:
    fast_neural_style_eccv16_starry_night.t7
    fast_neural_style_instance_norm_feathers.t7
    http://cs.stanford.edu/people/jcjohns/fast-neural-style/models/instance_norm/feathers.t7

    二、示例代码
     
    代码流程均较简单:图像转Blob,forward,处理输出结果,显示。【可以说是OpenCV Dnn使用方面的经典入门,对于我们对流程配置、参数理解都有很好帮助】
     
    c++代码如下:
     
    // This script is used to run style transfer models from '
    // https://github.com/jcjohnson/fast-neural-style using OpenCV
     
    #include <opencv2/dnn.hpp>
    #include <opencv2/imgproc.hpp>
    #include <opencv2/highgui.hpp>
    #include <iostream>
     
    using namespace cv;
    using namespace cv::dnn;
    using namespace std;
     
     
    int main(int argc, char **argv)
    {
        string modelBin = "../../data/testdata/dnn/fast_neural_style_instance_norm_feathers.t7";
        string imageFile = "../../data/image/chicago.jpg";
     
        float scale = 1.0;
        cv::Scalar mean { 103.939, 116.779, 123.68 };
        bool swapRB = false;
        bool crop = false;
        bool useOpenCL = false;
     
        Mat img = imread(imageFile);
        if (img.empty()) {
            cout << "Can't read image from file: " << imageFile << endl;
            return 2;
        }
     
        // Load model
        Net net = dnn::readNetFromTorch(modelBin);
        if (useOpenCL)
            net.setPreferableTarget(DNN_TARGET_OPENCL);
     
        // Create a 4D blob from a frame.
        Mat inputBlob = blobFromImage(img,scale, img.size(),mean,swapRB,crop);
     
        // forward netword
        net.setInput(inputBlob);
        Mat output = net.forward();
     
        // process output
        Mat(output.size[2], output.size[3], CV_32F, output.ptr<float>(0, 0)) += 103.939;
        Mat(output.size[2], output.size[3], CV_32F, output.ptr<float>(0, 1)) += 116.779;
        Mat(output.size[2], output.size[3], CV_32F, output.ptr<float>(0, 2)) += 123.68;
     
        std::vector<cv::Mat> ress;
        imagesFromBlob(output, ress);
     
        // show res
        Mat res;
        ress[0].convertTo(res, CV_8UC3);
        imshow("reslut", res);
     
        imshow("origin", img);
     
        waitKey();
        return 0;
    }
     
    三、演示
    fast_neural_style_instance_norm_feathers.t7的演示效果

    在这里插入图片描述
    在这里插入图片描述
    fast_neural_style_eccv16_starry_night.t7的演示效果:
    在这里插入图片描述
     
    在这里插入图片描述

    我认为对简笔画的效果不是太好
    通过重新作用于原始图片,我认识到这个模型采用的很可能是局部图片

    那么这些模型如何训练出来?这里也给出了很多帮助:

    Training new models

    To train new style transfer models, first use the scriptscripts/make_style_dataset.py to create an HDF5 file from folders of images.You will then use the script train.lua to actually train models.

    Step 1: Prepare a dataset

    You first need to install the header files for Python 2.7 and HDF5. On Ubuntuyou should be able to do the following:

    sudo apt-get -y install python2.7-dev
    sudo apt-get install libhdf5-dev

    You can then install Python dependencies into a virtual environment:

    virtualenv .env                  # Create the virtual environmentsource .env/bin/activate         # Activate the virtual environment
     
    pip install -r requirements.txt 
    # Install Python dependencies# Work for a while ...
     
    deactivate                      
    # Exit the virtual environment

    With the virtual environment activated, you can use the scriptscripts/make_style_dataset.py to create an HDF5 file from a directory oftraining images and a directory of validation images:

    python scripts/make_style_dataset.py
      --train_dir path/to/training/images
      --val_dir path/to/validation/images
      --output_file path/to/output/file.h5

    All models in thisrepository were trained using the images from theCOCO dataset.

    The preprocessing script has the following flags:

    • --train_dir: Path to a directory of training images.
    • --val_dir: Path to a directory of validation images.
    • --output_file: HDF5 file where output will be written.
    • --height, --width: All images will be resized to this size.
    • --max_images: The maximum number of images to use for trainingand validation; -1 means use all images in the directories.
    • --num_workers: The number of threads to use.

    Step 2: Train a model

    After creating an HDF5 dataset file, you can use the script train.lua totrain feedforward style transfer models. First you need to download aTorch version of theVGG-16 modelby running the script

    bash models/download_vgg16.sh

    This will download the file vgg16.t7 (528 MB) to the models directory.

    You will also need to installdeepmind/torch-hdf5which gives HDF5 bindings for Torch:

    luarocks install https://raw.githubusercontent.com/deepmind/torch-hdf5/master/hdf5-0-0.rockspec

    You can then train a model with the script train.lua. For basic usage thecommand will look something like this:

    th train.lua
      -h5_file path/to/dataset.h5
      -style_image path/to/style/image.jpg
      -style_image_size 384
      -content_weights 1.0
      -style_weights 5.0
      -checkpoint_name checkpoint
      -gpu 0

    The full set of options for this script are described here.


     





  • 相关阅读:
    (笔试题)镇长选举
    (笔试题)最小的非“重复的数”
    ( 笔试题)只出现一次的数
    (算法)二叉树中两个结点的最近公共父结点
    (笔试题)区间最大重叠
    (剑指Offer)面试题61:按之字形顺序打印二叉树
    (算法)Partition方法求数组第k大的数
    (剑指Offer)面试题60:把二叉树打印成多行
    整理一些不错的、网上好评的电影、电视、视频等资源地址
    个人网站/博客,建站好的域名和网站供应商网站整理
  • 原文地址:https://www.cnblogs.com/jsxyhelu/p/10804243.html
Copyright © 2011-2022 走看看