原项目地址:keras-yolo3-improved
selfdata_keras_yolov3.ipynb,训练ipynb
selfdata_yolov3_test.ipynb,预测ipynb
yolo_matt.py,预测时候改进输出结果
首先基于作者数据进行训练,而后自己提供数据集解决专门问题。
一、数据准备
地址,xmin,ymin,xmax,ymax,类别ID然后空格下一个box,每张图一行。
images/images_all/86900fb6gy1fl4822o7qmj22ao328qv7.jpg 10,259,399,580,27
images/images_all/b95fe9cbgw1eyw88vlifjj20c70hsq46.jpg 10,353,439,640,29
images/images_all/005CsCZ0jw1f1n8kcj8m1j30ku0kumz6.jpg 75,141,343,321,27
二、网络训练
原keras源码中有两段训练:
第一段冻结前面的249层进行迁移学习(原有的yolov3)
第二段解冻全部层进行训练
由于使用专业领域图像,与原有的yolov3训练集差异太大,所以第一阶段的迁移学习阶段没用,故直接开始第二段或重新根据darknet53训练。
可能需要预下载的模型:
yolo_weights.h5 预训练模型(用作迁移)
python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5
darknet53.weights (用作重新训练)
wget https://pjreddie.com/media/files/darknet53.conv.74
yolo.h5 (yolov3-VOC训练模型,可以直接用来做预测 )
python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
训练时候需要的参数
class yolo_args:
annotation_path = 'train.txt'
log_dir = 'logs/003/'
classes_path = 'model_data/class_file_en.txt'
anchors_path = 'model_data/yolo_anchors.txt'
input_shape = (416,416) # multiple of 32, hw
# 608*608 416*416 320*320
val_split = 0.1
batch_size = 16
epochs_stage_1 = 10
stage_1_train = False
epochs_finally = 100
finally_train = True
weights_path = 'logs/003/ep009-loss33.297-val_loss32.851.h5' # 可以使用'model_data/tiny_yolo_weights.h5' 也可以使用tiny_yolo的:'model_data/yolo_weights.h5'
# train
_main(yolo_args)
其中:
annotation_path就是数据集准备的txt
log_dir ,Model存放地址,譬如:events.out.tfevents.1545966202、ep077-loss19.318-val_loss19.682.h5
classes_path ,分类内容
anchors_path ,yolo anchors,可自行调整,也可以使用默认的
input_shape ,一般是416
epochs_stage_1 = 10和 stage_1_train = False,是同一个,也就是是否进行迁移学习(stage_1_train ),要学习的话,学习几个epoch(epochs_stage_1 )
epochs_finally = 100和 finally_train = True ,是,是否进行后面开放所有层的学习(finally_train ),学习几个epoch(epochs_finally)
weights_path ,调用model的路径
三、预测和结果优化
预测代码参考:
import sys
import argparse
from yolo import YOLO, detect_video
from PIL import Image
yolo_test_args = {
"model_path": 'model_data/yolo.h5',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/coco_classes.txt',
"score" : 0.3,
"iou" : 0.45,
"model_image_size" : (416, 416),
"gpu_num" : 1,
}
yolo_test = YOLO(**yolo_test_args)
image = Image.open('images/part1/path1.jpg')
r_image = yolo_test.detect_image(image)
r_image.show()
预测结果优化:
import sys
import argparse
from yolo_matt import YOLO, detect_video
from PIL import Image
yolo_test_args = {
"model_path": 'logs/003/ep077-loss19.318-val_loss19.682.h5',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/class_file_en.txt',
"score" : 0.2,# 0.2
"iou" : 0.1,# 0.45
"model_image_size" : (416, 416),
"gpu_num" : 1,
}
yolo_test = YOLO(**yolo_test_args)
# 输出内容整理
def _get_class(classes_path):
classes_path = os.path.expanduser(classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def yolov3_output(image,out_boxes,out_scores,out_classes):
output = []
yolo_classes = _get_class(yolo_test_args['classes_path'])
for n,box in enumerate(out_boxes):
y_min, x_min, y_max, x_max = box
y_min = max(0, np.floor(y_min + 0.5).astype('int32'))
x_min = max(0, np.floor(x_min + 0.5).astype('int32'))
y_max = min(image.size[1], np.floor(y_max + 0.5).astype('int32'))
x_max = min(image.size[0], np.floor(x_max + 0.5).astype('int32'))
score = out_scores[n]
yo_class = yolo_classes[out_classes[n]]
output.append({ 'y_min':y_min, 'x_min':x_min, 'y_max':y_max, 'x_max':x_max,
'width':image.size[0],'height':image.size[1],
'score':score,'yo_class':yo_class})
return output
image = Image.open('images/images_all/path1.jpg')
r_image,out_boxes, out_scores, out_classes = yolo_test.detect_image(image)
output = yolov3_output(r_image,out_boxes,out_scores,out_classes)
输出结果类似:
{
'path1.jpg':
[{'y_min': 416, 'x_min': 34, 'y_max': 754, 'x_max': 367, 'width': 440, 'height': 783, 'score': 0.9224778, 'yo_class': 'class1'},
{'y_min': 428, 'x_min': 3, 'y_max': 783, 'x_max': 352, 'width': 440, 'height': 783, 'score': 0.2180994, 'yo_class': 'class2'}]
}