Quad Tiling
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 3740 Accepted: 1684
Description
Tired of the Tri Tiling game finally, Michael turns to a more challengeable game, Quad Tiling:
In how many ways can you tile a 4 × N (1 ≤ N ≤ 109) rectangle with 2 × 1 dominoes? For the answer would be very big, output the answer modulo M (0 < M ≤ 105).
Input
Input consists of several test cases followed by a line containing double 0. Each test case consists of two integers, N and M, respectively.
Output
For each test case, output the answer modules M.
Sample Input
1 10000
3 10000
5 10000
0 0
Sample Output
1
11
95
Source
POJ Monthly–2007.10.06, Dagger
递推式:a[i]=a[i-1]+5*a[i-2]+a[i-3]-a[i-4];
由于N高达10^9,所以要用矩阵进行优化。
|0 1 0 0|
|0 0 1 0|
|0 0 0 1|
|-1 1 5 1|
与
|a[i-3]|
|a[i-2]|
|a[i-1]|
|a[i]|
相乘
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <cstdlib>
#include <algorithm>
#define LL long long
using namespace std;
const int Max = 10;
int Mod;
struct Matrix
{
int n,m;
int a[Max][Max];
void clear()//清空矩阵
{
n=0;
m=0;
memset(a,0,sizeof(a));
}
Matrix operator * (const Matrix &b)const//矩阵相乘
{
Matrix tmp;
tmp.clear();
tmp.n=n;
tmp.m=b.m;
for(int i=0;i<n;i++)
{
for(int j=0;j<b.m;j++)
{
for(int k=0;k<m;k++)
{
tmp.a[i][j]=(tmp.a[i][j]+(a[i][k]%Mod)*(b.a[k][j]%Mod))%Mod;
}
}
}
return tmp;
}
};
void Pow(int m)
{
Matrix s;
s.clear();
s.n=4;
s.m=4;
s.a[3][3]=1;s.a[3][2]=5;
s.a[3][1]=1;s.a[3][0]=-1;
s.a[1][2]=1;s.a[2][3]=1;
s.a[0][1]=1;
Matrix ans;
ans.clear();
ans.n=4;
ans.m=1;
ans.a[0][0]=1;
ans.a[1][0]=5;
ans.a[2][0]=11;
ans.a[3][0]=36;
while(m)//快速幂
{
if(m&1)
{
ans=s*ans;
}
s=s*s;
m>>=1;
}
printf("%d
",ans.a[3][0]);
}
int main()
{
int n;
while(scanf("%d %d",&n,&Mod),n)
{
if(n<4)
{
switch(n)
{
case 1:
printf("%d
",1%Mod);
break;
case 2:
printf("%d
",5%Mod);
break;
case 3:
printf("%d
",11%Mod);
break;
}
continue;
}
Pow(n-4);
}
return 0;
}