zoukankan      html  css  js  c++  java
  • 两张图片相似度对比并标注

    from skimage.metrics import structural_similarity as compare_ssim
    import cv2
    
    # 加载两张图片并将他们转换为灰度
    imageA = cv2.imread(r"/Users/dcc/Desktop/333.JPG")
    imageB = cv2.imread(r"/Users/dcc/Desktop/4444.JPG")
    
    grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)
    grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY)
    
    # 计算两个灰度图像之间的结构相似度指数
    (score, diff) = compare_ssim(grayA, grayB, full=True)
    diff = (diff * 255).astype("uint8")
    print("SSIM:{}".format(score))
    
    #找到不同点的轮廓以致于我们可以在被标识为“不同”的区域周围放置矩形
    thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    # #找到一系列区域,在区域周围放置矩形
    for c in contours:
        (x, y, w, h) = cv2.boundingRect(c)
        cv2.rectangle(imageA, (x,y), (x+w,y+h), (0,0,255), 2)
        cv2.rectangle(imageB, (x,y), (x+w,y+h), (0,0,255), 2)
    #用cv2.imshow 展现最终对比之后的图片, cv2.imwrite 保存最终的结果图片
    cv2.imshow("Modified", imageB)
    cv2.imwrite(r"/Users/dcc/Desktop/99999999999.png", imageB)
    cv2.waitKey(0)
    

     非原著,网上的比较老了,执行就报错,所以重新搞了一个版本 

    学习最大的乐趣在于分享,我是绝世老中医,欢迎来诊 个人qq:1978529954
  • 相关阅读:
    CPU使用率呈现正弦曲线
    编写一个简单的http server(Linux, gcc)
    c#操作 文件操作
    Javascript 数字时钟
    .net 中读取文本文件
    c# 常用字符串函数
    I2C总线之(三)以C语言理解IIC
    典型的多线程操作界面的例子
    uvm_common_phase.svh
    uvm_task_phase.svh
  • 原文地址:https://www.cnblogs.com/jueshilaozhongyi/p/15027396.html
Copyright © 2011-2022 走看看