zoukankan      html  css  js  c++  java
  • opencv调用tensorflow模型

    代码:

    #include <fstream>
    #include <sstream>
    
    #include <opencv2/dnn.hpp>
    #include <opencv2/imgproc.hpp>
    #include <opencv2/highgui.hpp>
    
    using namespace cv;
    using namespace dnn;
    
    float confThreshold, nmsThreshold;
    std::vector<std::string> classes;
    
    void postprocess(Mat& frame, const std::vector<Mat>& out, Net& net);
    void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
    
    int main(int argc, char** argv)
    {
        // 根据选择的检测模型文件进行配置
        confThreshold = 0.5;
        nmsThreshold = 0.4;
    
        float scale = 1.0;
        Scalar mean = { 0, 0, 0 };
        bool swapRB = true;
        int inpWidth = 300;
        int inpHeight = 300;
    
        String modelPath = "ssd_mobilenet_v1_coco_2017_11_17\frozen_inference_graph.pb";
        String configPath = "ssd_mobilenet_v1_coco_2017_11_17\ssd_mobilenet_v1_coco_2017_11_17.pbtxt";
        String framework = "";
    
        int backendId = cv::dnn::DNN_BACKEND_OPENCV;
        int targetId = cv::dnn::DNN_TARGET_CPU;
    
        String classesFile = R"(ssd_mobilenet_v1_coco_2017_11_17\object_detection_classes_coco.txt)";
    
        // Open file with classes names.
        if (!classesFile.empty()) {
            const std::string& file = classesFile;
            std::ifstream ifs(file.c_str());
            if (!ifs.is_open())
                CV_Error(Error::StsError, "File " + file + " not found");
            std::string line;
            while (std::getline(ifs, line)) {
                classes.push_back(line);
            }
        }
    
        // Load a model.
        Net net = readNet(modelPath, configPath, framework);
        net.setPreferableBackend(backendId);
        net.setPreferableTarget(targetId);
    
        std::vector<String> outNames = net.getUnconnectedOutLayersNames();
    
        // Create a window
        static const std::string kWinName = "Deep learning object detection in OpenCV";
    
        // Process frames.
        Mat frame, blob;
        frame = imread("image1.jpg");
    
        // Create a 4D blob from a frame.
        Size inpSize(inpWidth > 0 ? inpWidth : frame.cols,
            inpHeight > 0 ? inpHeight : frame.rows);
        blobFromImage(frame, blob, scale, inpSize, mean, swapRB, false);
    
        // Run a model.
        net.setInput(blob);
        if (net.getLayer(0)->outputNameToIndex("im_info") != -1)  // Faster-RCNN or R-FCN
        {
            resize(frame, frame, inpSize);
            Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f);
            net.setInput(imInfo, "im_info");
        }
    
        std::vector<Mat> outs;
        net.forward(outs, outNames);
    
        postprocess(frame, outs, net);
    
        // Put efficiency information.
        std::vector<double> layersTimes;
        double freq = getTickFrequency() / 1000;
        double t = net.getPerfProfile(layersTimes) / freq;
        std::string label = format("Inference time: %.2f ms", t);
        putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
    
        imshow(kWinName, frame);
        waitKey(0);
    
        return 0;
    }
    
    void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
    {
        static std::vector<int> outLayers = net.getUnconnectedOutLayers();
        static std::string outLayerType = net.getLayer(outLayers[0])->type;
    
        std::vector<int> classIds;
        std::vector<float> confidences;
        std::vector<Rect> boxes;
        if (net.getLayer(0)->outputNameToIndex("im_info") != -1)  // Faster-RCNN or R-FCN
        {
            // Network produces output blob with a shape 1x1xNx7 where N is a number of
            // detections and an every detection is a vector of values
            // [batchId, classId, confidence, left, top, right, bottom]
            CV_Assert(outs.size() == 1);
            float* data = (float*)outs[0].data;
            for (size_t i = 0; i < outs[0].total(); i += 7) {
                float confidence = data[i + 2];
                if (confidence > confThreshold) {
                    int left = (int)data[i + 3];
                    int top = (int)data[i + 4];
                    int right = (int)data[i + 5];
                    int bottom = (int)data[i + 6];
                    int width = right - left + 1;
                    int height = bottom - top + 1;
                    classIds.push_back((int)(data[i + 1]) - 1);  // Skip 0th background class id.
                    boxes.push_back(Rect(left, top, width, height));
                    confidences.push_back(confidence);
                }
            }
        }
        else if (outLayerType == "DetectionOutput") {
            // Network produces output blob with a shape 1x1xNx7 where N is a number of
            // detections and an every detection is a vector of values
            // [batchId, classId, confidence, left, top, right, bottom]
            CV_Assert(outs.size() == 1);
            float* data = (float*)outs[0].data;
            for (size_t i = 0; i < outs[0].total(); i += 7) {
                float confidence = data[i + 2];
                if (confidence > confThreshold) {
                    int left = (int)(data[i + 3] * frame.cols);
                    int top = (int)(data[i + 4] * frame.rows);
                    int right = (int)(data[i + 5] * frame.cols);
                    int bottom = (int)(data[i + 6] * frame.rows);
                    int width = right - left + 1;
                    int height = bottom - top + 1;
                    classIds.push_back((int)(data[i + 1]) - 1);  // Skip 0th background class id.
                    boxes.push_back(Rect(left, top, width, height));
                    confidences.push_back(confidence);
                }
            }
        }
        else if (outLayerType == "Region") {
            for (size_t i = 0; i < outs.size(); ++i) {
                // Network produces output blob with a shape NxC where N is a number of
                // detected objects and C is a number of classes + 4 where the first 4
                // numbers are [center_x, center_y, width, height]
                float* data = (float*)outs[i].data;
                for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols) {
                    Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
                    Point classIdPoint;
                    double confidence;
                    minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
                    if (confidence > confThreshold) {
                        int centerX = (int)(data[0] * frame.cols);
                        int centerY = (int)(data[1] * frame.rows);
                        int width = (int)(data[2] * frame.cols);
                        int height = (int)(data[3] * frame.rows);
                        int left = centerX - width / 2;
                        int top = centerY - height / 2;
    
                        classIds.push_back(classIdPoint.x);
                        confidences.push_back((float)confidence);
                        boxes.push_back(Rect(left, top, width, height));
                    }
                }
            }
        }
        else
            CV_Error(Error::StsNotImplemented, "Unknown output layer type: " + outLayerType);
    
        std::vector<int> indices;
        NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
        for (size_t i = 0; i < indices.size(); ++i) {
            int idx = indices[i];
            Rect box = boxes[idx];
            drawPred(classIds[idx], confidences[idx], box.x, box.y,
                box.x + box.width, box.y + box.height, frame);
        }
    }
    
    void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
    {
        rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));
    
        std::string label = format("%.2f", conf);
        if (!classes.empty()) {
            CV_Assert(classId < (int)classes.size());
            label = classes[classId] + ": " + label;
        }
    
        int baseLine;
        Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
    
        top = max(top, labelSize.height);
        rectangle(frame, Point(left, top - labelSize.height),
            Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED);
        putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar());
    }

    运行结果:

    需要的资源文件可以去下面这个参考里面去找,因为这个参考写的太好了,之所以我再记录一遍是为了防止参考文件找不到时备用。

    参考博客:https://blog.csdn.net/atpalain_csdn/article/details/100098720

  • 相关阅读:
    java中的锁
    CAS机制与自旋锁
    volatile关键字的特性及证明
    java中并发下的集合类
    数据库的分库分表
    浅入理解JVM
    99乘法表
    JAVA实现简单的时间刷新使用线程
    线程的优先级
    线程礼让
  • 原文地址:https://www.cnblogs.com/juluwangshier/p/13425879.html
Copyright © 2011-2022 走看看