代码:
#include <fstream> #include <sstream> #include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace dnn; float confThreshold, nmsThreshold; std::vector<std::string> classes; void postprocess(Mat& frame, const std::vector<Mat>& out, Net& net); void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame); int main(int argc, char** argv) { // 根据选择的检测模型文件进行配置 confThreshold = 0.5; nmsThreshold = 0.4; float scale = 1.0; Scalar mean = { 0, 0, 0 }; bool swapRB = true; int inpWidth = 300; int inpHeight = 300; String modelPath = "ssd_mobilenet_v1_coco_2017_11_17\frozen_inference_graph.pb"; String configPath = "ssd_mobilenet_v1_coco_2017_11_17\ssd_mobilenet_v1_coco_2017_11_17.pbtxt"; String framework = ""; int backendId = cv::dnn::DNN_BACKEND_OPENCV; int targetId = cv::dnn::DNN_TARGET_CPU; String classesFile = R"(ssd_mobilenet_v1_coco_2017_11_17\object_detection_classes_coco.txt)"; // Open file with classes names. if (!classesFile.empty()) { const std::string& file = classesFile; std::ifstream ifs(file.c_str()); if (!ifs.is_open()) CV_Error(Error::StsError, "File " + file + " not found"); std::string line; while (std::getline(ifs, line)) { classes.push_back(line); } } // Load a model. Net net = readNet(modelPath, configPath, framework); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); std::vector<String> outNames = net.getUnconnectedOutLayersNames(); // Create a window static const std::string kWinName = "Deep learning object detection in OpenCV"; // Process frames. Mat frame, blob; frame = imread("image1.jpg"); // Create a 4D blob from a frame. Size inpSize(inpWidth > 0 ? inpWidth : frame.cols, inpHeight > 0 ? inpHeight : frame.rows); blobFromImage(frame, blob, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN { resize(frame, frame, inpSize); Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f); net.setInput(imInfo, "im_info"); } std::vector<Mat> outs; net.forward(outs, outNames); postprocess(frame, outs, net); // Put efficiency information. std::vector<double> layersTimes; double freq = getTickFrequency() / 1000; double t = net.getPerfProfile(layersTimes) / freq; std::string label = format("Inference time: %.2f ms", t); putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); imshow(kWinName, frame); waitKey(0); return 0; } void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net) { static std::vector<int> outLayers = net.getUnconnectedOutLayers(); static std::string outLayerType = net.getLayer(outLayers[0])->type; std::vector<int> classIds; std::vector<float> confidences; std::vector<Rect> boxes; if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN { // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] CV_Assert(outs.size() == 1); float* data = (float*)outs[0].data; for (size_t i = 0; i < outs[0].total(); i += 7) { float confidence = data[i + 2]; if (confidence > confThreshold) { int left = (int)data[i + 3]; int top = (int)data[i + 4]; int right = (int)data[i + 5]; int bottom = (int)data[i + 6]; int width = right - left + 1; int height = bottom - top + 1; classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id. boxes.push_back(Rect(left, top, width, height)); confidences.push_back(confidence); } } } else if (outLayerType == "DetectionOutput") { // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] CV_Assert(outs.size() == 1); float* data = (float*)outs[0].data; for (size_t i = 0; i < outs[0].total(); i += 7) { float confidence = data[i + 2]; if (confidence > confThreshold) { int left = (int)(data[i + 3] * frame.cols); int top = (int)(data[i + 4] * frame.rows); int right = (int)(data[i + 5] * frame.cols); int bottom = (int)(data[i + 6] * frame.rows); int width = right - left + 1; int height = bottom - top + 1; classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id. boxes.push_back(Rect(left, top, width, height)); confidences.push_back(confidence); } } } else if (outLayerType == "Region") { for (size_t i = 0; i < outs.size(); ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] float* data = (float*)outs[i].data; for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols) { Mat scores = outs[i].row(j).colRange(5, outs[i].cols); Point classIdPoint; double confidence; minMaxLoc(scores, 0, &confidence, 0, &classIdPoint); if (confidence > confThreshold) { int centerX = (int)(data[0] * frame.cols); int centerY = (int)(data[1] * frame.rows); int width = (int)(data[2] * frame.cols); int height = (int)(data[3] * frame.rows); int left = centerX - width / 2; int top = centerY - height / 2; classIds.push_back(classIdPoint.x); confidences.push_back((float)confidence); boxes.push_back(Rect(left, top, width, height)); } } } } else CV_Error(Error::StsNotImplemented, "Unknown output layer type: " + outLayerType); std::vector<int> indices; NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); for (size_t i = 0; i < indices.size(); ++i) { int idx = indices[i]; Rect box = boxes[idx]; drawPred(classIds[idx], confidences[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } } void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) { rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0)); std::string label = format("%.2f", conf); if (!classes.empty()) { CV_Assert(classId < (int)classes.size()); label = classes[classId] + ": " + label; } int baseLine; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); top = max(top, labelSize.height); rectangle(frame, Point(left, top - labelSize.height), Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED); putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar()); }
运行结果:
需要的资源文件可以去下面这个参考里面去找,因为这个参考写的太好了,之所以我再记录一遍是为了防止参考文件找不到时备用。
参考博客:https://blog.csdn.net/atpalain_csdn/article/details/100098720