zoukankan      html  css  js  c++  java
  • 消息队列MQ

    一、消息队列概述
    消息队列中间件是分布式系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构。目前使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ

    二、消息队列应用场景
    以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。

    2.1异步处理
    场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种 1.串行的方式;2.并行方式
    a、串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。

    b、并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间

    假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。
    因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)
    小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

    引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

    按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。

    2.2应用解耦
    场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:

    传统模式的缺点:假如库存系统无法访问,则订单减库存将失败,从而导致订单失败,订单系统与库存系统耦合

    如何解决以上问题呢?引入应用消息队列后的方案,如下图:

    订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功
    库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作
    假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦

    2.3流量削锋
    流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。
    应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。
    a、可以控制活动的人数
    b、可以缓解短时间内高流量压垮应用

    用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面。
    秒杀业务根据消息队列中的请求信息,再做后续处理

    2.4日志处理
    日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下

    日志采集客户端,负责日志数据采集,定时写受写入Kafka队列
    Kafka消息队列,负责日志数据的接收,存储和转发
    日志处理应用:订阅并消费kafka队列中的日志数据 

    2.5消息通讯
    消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等
    点对点通讯:

    客户端A和客户端B使用同一队列,进行消息通讯。

    聊天室通讯:

    客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

    以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。

    三、消息中间件示例 
    3.1电商系统

    消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。
    (1)应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)
    (2)扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理。
    (3)消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。

    3.2日志收集系统

    分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。
    Zookeeper注册中心,提出负载均衡和地址查找服务
    日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列
    Kafka集群:接收,路由,存储,转发等消息处理
    Storm集群:与OtherApp处于同一级别,采用拉的方式消费队列中的数据

    以上内容摘自:原文:https://www.cnblogs.com/wuzm/p/11899694.html

    四、常见问题

    1.消息丢失怎么办?

    数据的丢失问题,可能出现在生产者、MQ、消费者中。

    【生产者丢失数据】

    一般网络异常会造成生产者丢失数据。为避免数据丢失,生产者需要设置开启 confirm 机制。 confirm 机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息 RabbitMQ 接收了之后会异步回调你的一个接口通知你这个消息接收到了。

    【RabitMQ丢失数据】

    需要开启 RabbitMQ 的持久化,就是消息写入之后会持久化到磁盘,哪怕是 RabbitMQ 自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,RabbitMQ 还没持久化,自己就挂了,可能导致少量数据丢失,但是这个概率较小。

    【消费者丢失数据】

    消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,但是RabbitMQ 认为你都消费了,这就造成了数据丢失。此时,必须关闭 RabbitMQ 的自动 ack,可以通过一个 api 来调用就行,然后每次你自己代码里确保处理完的时候,再在程序里 ack 一把。这样的话,如果你还没处理完,不就没有 ack 了?那 RabbitMQ 就认为你还没处理完,这个时候 RabbitMQ 会把这个消费分配给别的 consumer 去处理,消息是不会丢的。

    2.消息队列优缺点?
    优点:在特殊场景下有其对应的好处,解耦、异步、削峰。

    缺点:系统可用性降低、系统复杂度提高、一致性问题

    3.如何保证消息的顺序性?
    RabbitMQ:一个 queue,多个 consumer。比如,生产者向 RabbitMQ 里发送了三条数据,顺序依次是 data1/data2/data3,压入的是 RabbitMQ 的一个内存队列。有三个消费者分别从 MQ 中消费这三条数据中的一条,结果消费者2先执行完操作,把 data2 存入数据库,然后是 data1/data3。这不明显乱了。
    解决方案:
    拆分多个 queue,每个 queue 一个 consumer,就是多一些 queue 而已,确实是麻烦点;或者就一个 queue 但是对应一个 consumer,然后这个 consumer 内部用内存队列做排队,然后分发给底层不同的 worker 来处理。
    4.大量消息在MQ积压如何处理?

    一般这个时候,只能临时紧急扩容了,具体操作步骤和思路如下:

    1.先修复 consumer 的问题,确保其恢复消费速度,然后将现有 consumer 都停掉。
    2.新建一个 topic,partition 是原来的 10 倍,临时建立好原先 10 倍的 queue 数量。
    3.然后写一个临时的分发数据的 consumer 程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的 10 倍数量的 queue。
    4.接着临时征用 10 倍的机器来部署 consumer,每一批 consumer 消费一个临时 queue 的数据。这种做法相当于是临时将 queue 资源和 consumer 资源扩大 10 倍,以正常的 10 倍速度来消费数据。
    5.等快速消费完积压数据之后,得恢复原先部署的架构,重新用原先的 consumer 机器来消费消息。

    5.MQ中消息过期咋办?
    RabbtiMQ 是可以设置过期时间的,也就是 TTL。

    如果消息在 queue 中积压超过一定的时间就会被 RabbitMQ 给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在 mq 里,而是大量的数据会直接搞丢

    这个情况下,就不是说要增加 consumer 消费积压的消息,因为实际上没啥积压,而是丢了大量的消息。我们可以采取一个方案,就是批量重导,这个我们之前线上也有类似的场景干过。就是大量积压的时候,我们当时就直接丢弃数据了,然后等过了高峰期以后,比如大家一起喝咖啡熬夜到晚上12点以后,用户都睡觉了。这个时候我们就开始写程序,将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入 mq 里面去,把白天丢的数据给他补回来。



     
    原文链接:https://www.jianshu.com/p/4491cba335d1
    来源:简书
  • 相关阅读:
    再论使用Oracle Instant Client连接Oracle
    再谈业务逻辑架构模式(事务脚本,表模块,活动记录,领域模型)
    业务逻辑架构模式(事务脚本,表模块,活动记录,领域模型)
    .net程序集组成与内存布局
    多参的实现原理
    起点
    Windows1[头文件]
    C++中构造函数、析构函数、拷贝构造函数详解
    PHP 开发工具
    写点东西顺便吐槽(很弱很弱的技术文)
  • 原文地址:https://www.cnblogs.com/july-1016/p/14103764.html
Copyright © 2011-2022 走看看