zoukankan      html  css  js  c++  java
  • 在Spark中通过Scala + Mongodb实现连接池

    How to implement connection pool in spark

    https://github.com/YulinGUO/BigDataTips/blob/master/spark/How%20to%20implement%20connection%20pool%20in%20Spark.md

    问题所在

    Spark Streaming Guid中,提到:

    dstream.foreachRDD { rdd =>
        rdd.foreachPartition { partitionOfRecords =>
        // ConnectionPool is a static, lazily initialized pool of connections
        val connection = ConnectionPool.getConnection()
        partitionOfRecords.foreach(record => connection.send(record))
        ConnectionPool.returnConnection(connection)  // return to the pool for future reuse
        }}   

    可是如何具体实现呢?

    Scala + Mongodb实现连接池

    一个通常意义上的连接池,能够请求获取资源,也能释放资源。不过MongoDB java driver已经帮我们实现了这一套逻辑。

    Note: The Mongo object instance actually represents a pool of connections to the database; you will only need one object of class Mongo even with multiple threads. See the concurrency doc page for more information.

    The Mongo class is designed to be thread safe and shared among threads. Typically you create only 1 instance for a given DB cluster and use it across your app. If for some reason you decide to create many mongo intances, note that:

    all resource usage limits (max connections, etc) apply per mongo instance to dispose of an instance, make sure you call mongo.close() to clean up resources

    也就是说,我们的pool,只要能获得Mongo就可以了。也就是说每次请求,在executor端,能get已经创建好了MongoClient就可以了。

    object MongoPool {
    
      var  instances = Map[String, MongoClient]()
    
      //node1:port1,node2:port2 -> node
      def nodes2ServerList(nodes : String):java.util.List[ServerAddress] = {
        val serverList = new java.util.ArrayList[ServerAddress]()
        nodes.split(",")
          .map(portNode => portNode.split(":"))
          .flatMap{ar =>{
          if (ar.length==2){
            Some(ar(0),ar(1).toInt)
          }else{
            None
          }
        }}
          .foreach{case (node,port) => serverList.add(new ServerAddress(node, port))}
    
        serverList
      }
    
      def apply(nodes : String) : MongoClient = {
        instances.getOrElse(nodes,{
          val servers = nodes2ServerList(nodes)
          val client =  new MongoClient(servers)
          instances += nodes -> client
          println("new client added")
          client
        })
      }
    }

    这样,一个static 的MongoPool的Object已经创建,scala Ojbect类,在每个JVM中会初始化一次。

    rdd.foreachPartition(partitionOfRecords => {
    
       val nodes = "node:port,node2:port2"
       lazy val  client = MongoPool(nodes)
       lazy val  coll2 = client.getDatabase("dm").getCollection("profiletags")
    
       partitionOfRecords.grouped(500).foreach()
    })

    注意,此处client用lazy修饰,等到executor使用client的时候,才会执行。否则的话,会出现client not serializable.

    优点分析

    1.不重复创建,销毁跟数据库的连接,效率高。 Spark 每个executor 申请一个JVM进程,task是多线程模型,运行在executor当中。task==partition数目。Object只在每个JVM初始化一次。
    2.代码design pattern

    参考资料

    Spark Streaming Guid

  • 相关阅读:
    新浪微博采用Oauth发送图片和文字
    android proguard也有弱点
    POJ 2376
    POJ 3259
    POJ 2253
    POJ 1062
    POJ 2299
    POJ 2186
    POJ 1860
    POJ 2823
  • 原文地址:https://www.cnblogs.com/jun1019/p/6379491.html
Copyright © 2011-2022 走看看