看了下HashMap的源码,做下记录,首先还是先从流程图开始
下面用代码分析下方法
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//未初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//该索引处节点无值
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//该节点处有值
else {
Node<K,V> e; K k;
//和该处节点的 hash 相同并且 key相同
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//是红黑树节点
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//是链表
else {
for (int binCount = 0; ; ++binCount) {
//尾部节点
if ((e = p.next) == null) {
//添加到尾部
p.next = newNode(hash, key, value, null);
//大于等于7 转为树节点
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果链表不是尾部节点,并且是否遇到了key和hash都相同的
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 找到了 key和value都相同的节点
if (e != null) { // existing mapping for key
V oldValue = e.value;
// value不为null 并且 onlyIfAbsent为false 就重新赋下值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
// 一个待实现的方法,hashMap无用
afterNodeAccess(e);
// 结束
return oldValue;
}
}
//结构更改的计数,为了在迭代中快速判断是否被修改了 而抛出异常
++modCount;
// 长度++,扩容阈值
if (++size > threshold)
resize();
//一个待实现的方法,hashMap无用
afterNodeInsertion(evict);
return null;
}
//初始化和扩容
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
//旧容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//旧阈值
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//旧容量已经是最大值了,就不扩容了,并且把阈值也调到最大
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//新容量为旧容量*2 并且小于最大值,且旧容量大于最小的初始化容量
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//新阈值也为旧阈值*2
newThr = oldThr << 1;
}
//旧阈值不为0,新的容量就是旧的阈值
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//两个值都是0,此时是初始化代码
else {
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//新阈值为0时 重新计算
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//数据从旧table复制到新table
if (oldTab != null) {
//从低到高复制
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//单纯一个Node对象结构,直接复制
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//红黑树复制
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//链表复制
else { // preserve order
//把原始的链表拆成两个,判断标准就是 hash& oldCap ==0
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//拆完之后,新table的j位置放lohead
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//拆完后,新table的j+oldCap的位置放hihead
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}