Ribbon负载均衡策略定义
IRule其实就只做了一件事情Server choose(Object key),可以看到这个功能是在LB中定义(要求)的,LB把这个功能委托给IRule来实现。不同的IRule可以向LB提供不同的负载均衡算法。
public interface IRule{ public Serverchoose(Object key); public void setLoadBalancer(ILoadBalancerlb); public ILoadBalancergetLoadBalancer(); }
com.netflix.loadbalancer包下面的提供了常用的几种策略。有RoundRobinRule、RandomRule这样的不依赖于Server运行状况的策略,也有AvailabilityFilteringRule、WeightedResponseTimeRule等多种基于收集到的Server运行状况决策的策略。判断运行状况时有,判断单个server的,也有判断整个zone的,适用于各种不同场景需求。
实现上有些策略可以继承一个既存的简单策略用于某些启动时候,也可以包含一个简单策略。甚至有ZoneAvoidanceRule这样的可以包含复合谓词的条件判断。TODOTODO IRue hireachy
Ribbon自带负载均衡策略比较
策略名 | 策略声明 | 策略描述 | 实现说明 |
BestAvailableRule | public class BestAvailableRule extends ClientConfigEnabledRoundRobinRule | 选择一个最小的并发请求的server | 逐个考察Server,如果Server被tripped了,则忽略,在选择其中ActiveRequestsCount最小的server |
AvailabilityFilteringRule | public class AvailabilityFilteringRule extends PredicateBasedRule | 过滤掉那些因为一直连接失败的被标记为circuit tripped的后端server,并过滤掉那些高并发的的后端server(active connections 超过配置的阈值) | 使用一个AvailabilityPredicate来包含过滤server的逻辑,其实就就是检查status里记录的各个server的运行状态 |
WeightedResponseTimeRule | public class WeightedResponseTimeRule extends RoundRobinRule | 根据相应时间分配一个weight,相应时间越长,weight越小,被选中的可能性越低。 | 一个后台线程定期的从status里面读取评价响应时间,为每个server计算一个weight。Weight的计算也比较简单responsetime 减去每个server自己平均的responsetime是server的权重。当刚开始运行,没有形成statas时,使用roubine策略选择server。 |
RetryRule | public class RetryRule extends AbstractLoadBalancerRule | 对选定的负载均衡策略机上重试机制。 | 在一个配置时间段内当选择server不成功,则一直尝试使用subRule的方式选择一个可用的server |
RoundRobinRule | public class RoundRobinRule extends AbstractLoadBalancerRule | roundRobin方式轮询选择server | 轮询index,选择index对应位置的server |
RandomRule | public class RandomRule extends AbstractLoadBalancerRule | 随机选择一个server | 在index上随机,选择index对应位置的server |
ZoneAvoidanceRule | public class ZoneAvoidanceRule extends PredicateBasedRule | 复合判断server所在区域的性能和server的可用性选择server | 使用ZoneAvoidancePredicate和AvailabilityPredicate来判断是否选择某个server,前一个判断判定一个zone的运行性能是否可用,剔除不可用的zone(的所有server),AvailabilityPredicate用于过滤掉连接数过多的Server。 |
Ribbon自带负载均衡策略实现解析
1. com.netflix.loadbalancer.BestAvailableRule
功能:选择一个最小的并发请求的server
主要代码:逐个考察Server,如果Server被tripped了,则忽略,在选择其中ActiveRequestsCount最小的server
for (Serverserver: serverList) { ServerStatsserverStats = loadBalancerStats.getSingleServerStat(server); if (!serverStats.isCircuitBreakerTripped(currentTime)) { int concurrentConnections = serverStats.getActiveRequestsCount(currentTime); if (concurrentConnections < minimalConcurrentConnections) { minimalConcurrentConnections = concurrentConnections; chosen = server; } }
2 com.netflix.loadbalancer.AvailabilityFilteringRule
功能:过滤掉那些因为一直连接失败的被标记为circuit tripped的后端server,并过滤掉那些高并发的的后端server(active connections 超过配置的阈值)
主要代码:使用一个AvailabilityPredicate来包含过滤server的逻辑,其实就就是检查status里记录的各个server的运行状态,过滤掉那些高并发的的后端server(active connections 超过配置的阈值)
boolean com.netflix.loadbalancer.AvailabilityPredicate.shouldSkipServer(ServerStatsstats) { if ((CIRCUIT_BREAKER_FILTERING.get() && stats.isCircuitBreakerTripped()) || stats.getActiveRequestsCount() >= activeConnectionsLimit.get()) { return true; } return false; }
3 com.netflix.loadbalancer.WeightedResponseTimeRule
功能:根据相应时间分配一个weight,相应时间越长,weight越小,被选中的可能性越低。 ”
主要代码:一个后台线程定期的从status里面读取评价响应时间,为每个server计算一个weight。Weight的计算也比较简单responsetime 减去每个server自己平均的responsetime是server的权重。当刚开始运行,没有形成statas时,使用roubine策略选择server。
class DynamicServerWeightTask extends TimerTask { public void run() { ServerWeightserverWeight = new ServerWeight(); serverWeight.maintainWeights(); } } maintainWeights(){ List<Double> finalWeights = new ArrayList<Double>(); for (Serverserver : nlb.getAllServers()) { ServerStatsss = stats.getSingleServerStat(server); double weight = totalResponseTime – ss.getResponseTimeAvg(); weightSoFar += weight; finalWeights.add(weightSoFar); } setWeights(finalWeights);} Serverchoose(ILoadBalancerlb, Object key) { double randomWeight = random.nextDouble() * maxTotalWeight; // pick the server index based on the randomIndex int n = 0; for (Double d : currentWeights) { if (d >= randomWeight) { serverIndex = n; break; } else { n++; } } server = allList.get(serverIndex);}
4 com.netflix.loadbalancer.RetryRule
功能:对选定的负载均衡策略机上重试机制。
主要代码:在一个配置时间段内当选择server不成功,则一直尝试使用subRule的方式选择一个可用的server
answer = subRule.choose(key); if (((answer == null) || (!answer.isAlive())) && (System.currentTimeMillis() < deadline)) { InterruptTasktask = new InterruptTask(deadline - System.currentTimeMillis()); while (!Thread.interrupted()) { answer = subRule.choose(key); if (((answer == null) || (!answer.isAlive())) && (System.currentTimeMillis() < deadline)) { /* pause and retry hoping it’s transient */ Thread.yield(); } else { break; } } task.cancel();
5 com.netflix.loadbalancer.RoundRobinRule
功能:roundRobin方式轮询选择server
主要代码:轮询index,选择index对应位置的server
List<Server> allServers = lb.getAllServers(); int upCount = reachableServers.size(); int serverCount = allServers.size(); int nextServerIndex = incrementAndGetModulo(serverCount); server = allServers.get(nextServerIndex);
6 com.netflix.loadbalancer.RandomRule
功能:随机选择一个server
主要代码:在index上随机,选择index对应位置的server
List<Server> upList = lb.getReachableServers(); List<Server> allList = lb.getAllServers(); int serverCount = allList.size(); int index = rand.nextInt(serverCount); server = upList.get(index);
7 com.netflix.loadbalancer.ZoneAvoidanceRule
功能:复合判断server所在区域的性能和server的可用性选择server
主要代码:使用ZoneAvoidancePredicate和AvailabilityPredicate来判断是否选择某个server,前一个,以一个区域为单位考察可用性,对于不可用的区域整个丢弃,从剩下区域中选可用的server。判断出最差的区域,排除掉最差区域。在剩下的区域中,将按照服务器实例数的概率抽样法选择,从而判断判定一个zone的运行性能是否可用,剔除不可用的zone(的所有server),AvailabilityPredicate用于过滤掉连接数过多的Server。
public com.netflix.loadbalancer.PredicateBasedRule.Serverchoose(Object key) { ILoadBalancerlb = getLoadBalancer(); Optional<Server> server = getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key); if (server.isPresent()) { return server.get(); } }
参照现有的若干中rule的实现风格,根据我们自己需要也可以开发出自定义的负载均衡策略。完。
参考资料:
http://www.tuicool.com/articles/7zIbIb3