zoukankan      html  css  js  c++  java
  • Pandas 基本操作

    基本

    创建 Dataframe
    import pandas as pd
    
    df = pd.DataFrame(
        {
            "Name": [
                "Braund, Mr. Owen Harris",
                "Allen, Mr. William Henry",
                "Bonnell, Miss. Elizabeth",
                "John, Mr. Peter Parker"
            ],
            "Age": [22, 35, 58, 24],
            "Sex": ["male", "male", "female", "male"],
            "Fare": [1500, 1600, 1550, 3345],
            "Pclass": [2, 2, 3, 3],
            "Location": [
                "China",
                "America",
                "Africa",
                "Japan"
            ]
        }
    )
    
                           Name  Age     Sex  Fare  Pclass Location
    0   Braund, Mr. Owen Harris   22    male  1500       2    China
    1  Allen, Mr. William Henry   35    male  1600       2  America
    2  Bonnell, Miss. Elizabeth   58  female  1550       3   Africa
    3    John, Mr. Peter Parker   24    male  3345       3    Japan
    
    创建 Series
    ages = pd.Series([22, 35, 58], name="Age")
    
    0    22
    1    35
    2    58
    Name: Age, dtype: int64
    
    选取一列
    df["Age"]
    
    0    22
    1    35
    2    58
    3    24
    Name: Age, dtype: int64
    
    预览前几行
    df.head() # 默认5行
    df.head(8) # 可指定行数
    
    预览后几行
    df.tail() # 默认5行
    df.tail(8) # 可指定行数
    
    查看每一列数据类型
    df.dtypes
    
    Name        object
    Age          int64
    Sex         object
    Fare         int64
    Pclass       int64
    Location    object
    dtype: object
    
    查看行列数
    df.shape
    
    (4, 6)
    
    求最大值

    仅对数字类型数据有效

    df["Age"].max()
    
    罗列基本统计信息
    df.describe()
    
                Age         Fare   Pclass
    count   4.00000     4.000000  4.00000
    mean   34.75000  1998.750000  2.50000
    std    16.52019   898.428025  0.57735
    min    22.00000  1500.000000  2.00000
    25%    23.50000  1537.500000  2.00000
    50%    29.50000  1575.000000  2.50000
    75%    40.75000  2036.250000  3.00000
    max    58.00000  3345.000000  3.00000
    
    罗列全部数据类型
    df.info()
    
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4 entries, 0 to 3
    Data columns (total 6 columns):
     #   Column    Non-Null Count  Dtype 
    ---  ------    --------------  ----- 
     0   Name      4 non-null      object
     1   Age       4 non-null      int64 
     2   Sex       4 non-null      object
     3   Fare      4 non-null      int64 
     4   Pclass    4 non-null      int64 
     5   Location  4 non-null      object
    dtypes: int64(3), object(3)
    memory usage: 320.0+ bytes
    

    文件

    读取文件
    df = pd.read_csv("path.csv")
    df = pd.read_csv("path.csv", index_col=0, parse_dates=True)
    # index_col=0 以第 0 列 为索引
    # parse_dates=True 将时间类型的列转义为时间戳类型
    
    将数据导出为 Excel
    df.to_excel(
        "data.xlsx",
        sheet_name="some_data",
        index=False
    )
    

    筛选

    大于某值
    df[
        df["Age"] > 35
    ]
    
                           Name  Age     Sex  Fare  Pclass Location
    2  Bonnell, Miss. Elizabeth   58  female  1550       3   Africa
    
    指定枚举值列表
    df[
        df["Fare"].isin(
            [1500, 1600]
        )
    ]
    
                           Name  Age   Sex  Fare  Pclass Location
    0   Braund, Mr. Owen Harris   22  male  1500       2    China
    1  Allen, Mr. William Henry   35  male  1600       2  America
    
    多个条件并集
    df[
        (df["Pclass"] == 2) | (df["Pclass"] == 3)
    ]
    # 只能用 | 或 &,不能用 or 或 and
    
                           Name  Age     Sex  Fare  Pclass Location
    0   Braund, Mr. Owen Harris   22    male  1500       2    China
    1  Allen, Mr. William Henry   35    male  1600       2  America
    2  Bonnell, Miss. Elizabeth   58  female  1550       3   Africa
    3    John, Mr. Peter Parker   24    male  3345       3    Japan
    
    筛选非空值
    df[
        df["Age"].notna()
    ]
    
    筛选后返回指定列
    adult_names = df.loc[df["Age"] > 35, "Name"]
    
    指定行区间、列区间
    df.iloc[2:3, 1:4]
    
       Age     Sex  Fare
    2   58  female  1550
    
    查看对限定条件的满足情况
    0    False
    1    False
    2     True
    3    False
    Name: Age, dtype: bool
    

    更改

    更改数据
    df["Age"] = "Mike"
    
    创建新列
    df["new_age"] = df["Age"] * 1.882
    df["age_fare"] = (df["Age"] / df["Fare"])
    
                           Name  Age     Sex  Fare  Pclass Location  new_age  age_fare
    0   Braund, Mr. Owen Harris   22    male  1500       2    China   41.404  0.014667
    1  Allen, Mr. William Henry   35    male  1600       2  America   65.870  0.021875
    2  Bonnell, Miss. Elizabeth   58  female  1550       3   Africa  109.156  0.037419
    3    John, Mr. Peter Parker   24    male  3345       3    Japan   45.168  0.007175
    
    重命名列名
    df_renamed = df.rename(
        columns={
            "Age": "X_Age",
            "Fare": "X_Fare",
            "Name": "X_Name",
        }
    )
    
    将列名全转为小写
    df_lower = df.rename(
        columns=str.lower
    )
    

    数据分析

    求平均值
    df["Age"].mean()
    
    求中位数
    df["Age"].median()
    
    求最值
    df["Age"].max()
    df["Age"].min()
    
    求偏度
    df["Age"].skew()
    
    一次性计算多列
    df[
        ["Age", "Fare"]
    ].median()
    
    一次性计算多列的多种统计类型
    df.agg(
        {
            "Age": ["min", "max", "median", "skew"],
            "Fare": ["min", "max", "median", "mean"]
        }
    )
    
                  Age     Fare
    min     22.000000  1500.00
    max     58.000000  3345.00
    median  29.500000  1575.00
    skew     1.368208      NaN
    mean          NaN  1998.75
    
    对全部数据分组
    df.groupby("Age").mean()
    
           Fare  Pclass
    Age                
    22   1500.0     2.0
    24   3345.0     3.0
    35   1600.0     2.0
    58   1550.0     3.0
    
    对指定几列分组
    df[
        ["Fare", "Age"]
    ].groupby("Age").mean()
    
           Fare
    Age        
    22   1500.0
    24   3345.0
    35   1600.0
    58   1550.0
    
    分组后再筛选
    df.groupby("Sex")["Age"].mean()
    
    Sex
    female    58.0
    male      27.0
    Name: Age, dtype: float64
    
    df.groupby(
        ["Sex", "Pclass"]
    )["Fare"].mean()
    
    Sex     Pclass
    female  3         1550.0
    male    2         1550.0
            3         3345.0
    Name: Fare, dtype: float64
    
    枚举值计数
    # 常规方法
    df.groupby("Pclass")["Pclass"].count()
    # 内置方法
    df["Pclass"].value_counts()
    
    Pclass
    2    2
    3    2
    Name: Pclass, dtype: int64
    

    排序

    指定某列排序

    默认升序

    df.sort_values(
        by="Age"
    ).head()
    
                           Name  Age     Sex  Fare  Pclass Location
    0   Braund, Mr. Owen Harris   22    male  1500       2    China
    3    John, Mr. Peter Parker   24    male  3345       3    Japan
    1  Allen, Mr. William Henry   35    male  1600       2  America
    2  Bonnell, Miss. Elizabeth   58  female  1550       3   Africa
    

    降序

    df.sort_values(
        by="Age",
        ascending=False
    ).head()
    
                           Name  Age     Sex  Fare  Pclass Location
    2  Bonnell, Miss. Elizabeth   58  female  1550       3   Africa
    1  Allen, Mr. William Henry   35    male  1600       2  America
    3    John, Mr. Peter Parker   24    male  3345       3    Japan
    0   Braund, Mr. Owen Harris   22    male  1500       2    China
    
    按照行标签排序
    df.sort_index().head()
    
                           Name  Age     Sex  Fare  Pclass Location
    0   Braund, Mr. Owen Harris   22    male  1500       2    China
    1  Allen, Mr. William Henry   35    male  1600       2  America
    2  Bonnell, Miss. Elizabeth   58  female  1550       3   Africa
    3    John, Mr. Peter Parker   24    male  3345       3    Japan
    

    调整表格结构

    宽表变窄表

    宽表就是把字段全都堆在一个表中,没有用多对多活其他更符合数据库三范式的方式加以设计。感官上看字段非常多,数据非常冗余,但是理解起来简单,一看就懂。宽表的存在是为了用空间换时间。

    窄表是相对于宽表而言,更符合逻辑。是为了表述某个维度的信息,从宽表中提取出若干列,组成一个新的表,便于做分析。

    一个宽表的示例如下:

    df = pd.DataFrame(
        {
            "phone": [
                "iPhone 13 Pro",
                "iPhone 13 Pro",
                "iPhone 13 Pro",
                "iPhone 13 Pro",
                "Huawei Mate 40 Pro",
                "Huawei Mate 40 Pro",
                "Huawei Mate 40 Pro",
                "Huawei Mate 40 Pro",
            ],
            "store": [
                "jingdong",
                "tianmao",
                "taobao",
                "pinduoduo",
                "jingdong",
                "tianmao",
                "taobao",
                "pinduoduo"
            ],
            "price": [
                7999,
                8399,
                6569,
                6754,
                7688,
                5499,
                6799,
                6588
            ]
        }
    )
    

    这个表格的数据描述了京东拼多多淘宝、和天猫四家平台的 iphone 13 ProHuawei Mate 40 Pro 的价格数据(数据是瞎写的),可以看到 phonestore 这两列稍显冗余,重复内容过多。

                    phone      store  price
    0       iPhone 13 Pro   jingdong   7999
    1       iPhone 13 Pro    tianmao   8399
    2       iPhone 13 Pro     taobao   6569
    3       iPhone 13 Pro  pinduoduo   6754
    4  Huawei Mate 40 Pro   jingdong   7688
    5  Huawei Mate 40 Pro    tianmao   5499
    6  Huawei Mate 40 Pro     taobao   6799
    7  Huawei Mate 40 Pro  pinduoduo   6588
    

    现在想要提取一个窄表,以 phone 为纵向索引,store 为横向字段,主体显示的值为 price

    df.pivot(
        index="sex", # 索引
        columns="id", # 列名
        values="price" # 值
    )
    
    store               jingdong  pinduoduo  taobao  tianmao
    phone                                                   
    Huawei Mate 40 Pro      7688       6588    6799     5499
    iPhone 13 Pro           7999       6754    6569     8399
    

    对每行每列添加总计的数据。

    df.pivot_table(
        index="phone",
        columns="store",
        values="price",
        aggfunc="mean", # 函数名称
        margins=True # 显示开关
    )
    
    store               jingdong  pinduoduo  taobao  tianmao       All
    phone                                                             
    Huawei Mate 40 Pro    7688.0       6588    6799     5499  6643.500
    iPhone 13 Pro         7999.0       6754    6569     8399  7430.250
    All                   7843.5       6671    6684     6949  7036.875
    
    重置索引

    对于这个 DataFrame,当前的索引列是 phone 的数据。

    store               jingdong  pinduoduo  taobao  tianmao
    phone                                                   
    Huawei Mate 40 Pro      7688       6588    6799     5499
    iPhone 13 Pro           7999       6754    6569     8399
    

    将其索引重置为数字序号:

    df.pivot(
        index="phone",
        columns="store",
        values="price"
    ).reset_index()
    
    store               phone  jingdong  pinduoduo  taobao  tianmao
    0      Huawei Mate 40 Pro      7688       6588    6799     5499
    1           iPhone 13 Pro      7999       6754    6569     8399
    

    如果要丢弃原来的 phone 索引,加上 drop 参数:

    df.pivot(
        index="phone",
        columns="store",
        values="price"
    ).reset_index(drop=True)
    
    store  jingdong  pinduoduo  taobao  tianmao
    0          7688       6588    6799     5499
    1          7999       6754    6569     8399
    
    联结 datafame

    有这样两个结构相似的 dataframe

    df1 = pd.DataFrame(
        {
            "Name": [
                "Braund, Mr. Owen Harris",
                "Allen, Mr. William Henry"
            ],
            "Age": [22, 35],
            "Sex": ["male", "male"],
            "Fare": [1500, 1600],
            "Pclass": [2, 2],
            "Location": [
                "China",
                "America"
            ]
        }
    )
    

    第一个表格是一个中国人和一个美国人的信息:

                           Name  Age   Sex  Fare  Pclass Location
    0   Braund, Mr. Owen Harris   22  male  1500       2    China
    1  Allen, Mr. William Henry   35  male  1600       2  America
    
    df2 = pd.DataFrame(
        {
            "Name": [
                "Bonnell, Miss. Elizabeth",
                "John, Mr. Peter Parker"
            ],
            "Age": [58, 24],
            "Sex": ["female", "male"],
            "Fare": [1550, 3345],
            "Pclass": [3, 3],
            "Location": [
                "Africa",
                "Japan"
            ]
        }
    )
    

    第二个表格是日本人和非洲人的信息:

                           Name  Age     Sex  Fare  Pclass Location
    0  Bonnell, Miss. Elizabeth   58  female  1550       3   Africa
    1    John, Mr. Peter Parker   24    male  3345       3    Japan
    

    将他们合并成一个 dataframe

    pd.concat(
        [df1, df2],
        axis=0 # 0 表示上下合并,1 表示左右合并
    )
    
                           Name  Age     Sex  Fare  Pclass Location
    0   Braund, Mr. Owen Harris   22    male  1500       2    China
    1  Allen, Mr. William Henry   35    male  1600       2  America
    0  Bonnell, Miss. Elizabeth   58  female  1550       3   Africa
    1    John, Mr. Peter Parker   24    male  3345       3    Japan
    
    合并 dataframe

    对于以下两个 dataframe

    df1 = pd.DataFrame(
        {
            "Name": [
                "Braund, Mr. Owen Harris",
                "Allen, Mr. William Henry"
            ],
            "Age": [22, 35]
        }
    )
    
                           Name  Age
    0   Braund, Mr. Owen Harris   22
    1  Allen, Mr. William Henry   35
    
    df2 = pd.DataFrame(
        {
            "Age": [22, 35],
            "Sex": ["female", "male"],
            "Fare": [1550, 3345],
            "Pclass": [3, 3],
            "Location": [
                "Africa",
                "Japan"
            ]
        }
    )
    
       Age     Sex  Fare  Pclass Location
    0   22  female  1550       3   Africa
    1   35    male  3345       3    Japan
    

    他们有相同的一列 Age,可以以 Age 为基准,将两个 dataframe 合并:

    df = pd.merge(
        df1,
        df2,
        how="left",
        on="Age" # 以 Age 为基准
    )
    
                           Name  Age     Sex  Fare  Pclass Location
    0   Braund, Mr. Owen Harris   22  female  1550       3   Africa
    1  Allen, Mr. William Henry   35    male  3345       3    Japan
    
  • 相关阅读:
    如何破解“千人千面”,深度解读用户画像
    如何破解“千人千面”,深度解读用户画像
    AngularJS的简单入门
    Could not complete request
    AngularJS中angular.min.js:80 Error: [ng:areq] http://errors.angularjs.org/1.2.9/ng/areq
    BeanCreationException: Error creating bean with name 'transactionManager' defined
    Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException:
    Caused by: java.net.BindException: Address already in use: bind
    Linux的远程连接工具:SSH的安装
    虚拟机的安装
  • 原文地址:https://www.cnblogs.com/junsircoding/p/15658879.html
Copyright © 2011-2022 走看看