zoukankan      html  css  js  c++  java
  • 题解 P5401 【[CTS2019]珍珠】

    题意

    (D)种颜色。对于一个长度为(n),取值(in[1,D])的序列,至少有(m)组相同的方案数

    题解

    记颜色(c)(cnt_c)个,一种方案合法当且仅当:

    [sum_{i=1}^Dcnt_imod 2le m ]

    简单推导得到:

    [sum_{i=1}^Dcnt_imod 2le n-2m ]

    先把(n-2m<0)(n-2m≥D)特判掉。

    记恰好有(k)个为奇数方案为(g_k),至少有(k)个为奇数的方案为(f_k)。容斥一波。

    [f_i=sum_{j} binom{i}{j}g_j ]

    反演。

    [egin{aligned} g_i=&sum_{j}(-1)^{j-i} binom{j}{i}f_j\ =&sum_{j}(-1)^{j-i}frac{j!}{i!(j-i)!}f_j\ =&frac{1}{i!}sum_{j}frac{(-1)^{j-i}}{(j-i)!} imes j!f_j\ end{aligned}]

    如果我们记(a_{D-i}=frac{(-1)^i}{i!},b_i=i!f_i,c_{D+i}=i!g_i),有:

    [c_{D+i}=sum_{j}a_{D-j+i} imes b_{j} ]

    卷积形式十分明显。

    ( ext{方案数=选k个} imes ext{强制奇数} imes{放任自流})

    [egin{aligned} f_k=& binom{D}{k}n![x^n](frac{e^x-e^{-x}}{2}^k)(e^x)^{D-k}\ =& binom{D}{k}frac{n!}{2^k}[x^n](e^x-e^{-x})^k(e^x)^{D-k}\ =& binom{D}{k}frac{n!}{2^k}[x^n]sum_{j=0}^k binom{k}{j}e^{xj}(-e^x)^{-(j-k)}(e^x)^{D-k}\ =& binom{D}{k}frac{n!}{2^k}[x^n]sum_{j=0}^k binom{k}{j}e^{xj}(-e^{-x})^{-(j-k)}(e^x)^{D-k}\ =& binom{D}{k}frac{n!}{2^k}[x^n]sum_{j=0}^k binom{k}{j}(-1)^{k-j}e^{x(D-2(k-j))} end{aligned}]

    (e^x=1+frac{x}{1!}+frac{x^2}{2!}+frac{x^3}{3!}+ldots)

    (e^{ax}=1+frac{ax}{1!}+frac{a^2x^2}{2!}+frac{a^3x^3}{3!}+ldots)

    (e^{ax})(mathbb{EGF}<1,a,a^2,a^3,dots>)([x^n]e^{ax}=frac{a^n}{n!})

    那就带回去:

    [egin{aligned} =& binom{D}{k}frac{1}{2^k}sum_{j=0}^k binom{k}{j}(-1)^{k-j}(D-2(k-j))^n\ =&frac{D!}{k!(D-k)!}frac{1}{2^k}sum_{j=0}^k frac{k!}{j!(k-j)!}(-1)^{k-j}(D-2(k-j))^n\ =&frac{D!}{(D-k)!2^k}sum_{j=0}^k frac{1}{(k-j)!j!}(-1)^j(D-2j)^n\ =&frac{D!}{(D-k)!2^k}sum_{j=0}^k frac{(-1)^j(D-2j)^n}{j!} imesfrac{1}{(k-j)!}\ end{aligned}]

    代码

    #include<bits/stdc++.h>
    namespace in{
        #ifdef slow
        inline int getc(){return getchar();}
        #else
        char buf[1<<21],*p1=buf,*p2=buf;
        inline int getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
        #endif
        template <typename T>inline void read(T& t){
    		t=0;int f=0;char ch=getc();while (!isdigit(ch)){if(ch=='-')f = 1;ch=getc();}
    	    while(isdigit(ch)){t=t*10+(ch-48);ch = getc();}if(f)t=-t;
    	}
        template <typename T,typename... Args> inline void read(T& t, Args&... args){read(t);read(args...);}
    }
    namespace out{
    	char buffer[1<<21];int p1=-1;const int p2 = (1<<21)-1;
    	inline void flush(){fwrite(buffer,1,p1+1,stdout),p1=-1;}
    	inline void putc(const char &x) {if(p1==p2)flush();buffer[++p1]=x;}
    	template <typename T>void write(T x) {
    		static char buf[15];static int len=-1;if(x>=0){do{buf[++len]=x%10+48,x/=10;}while (x);}else{putc('-');do {buf[++len]=-(x%10)+48,x/=10;}while(x);}
    		while (len>=0)putc(buf[len]),--len;
    	}
    }
    using namespace std;
    template<const int mod>
    struct modint{
        int x;
        modint<mod>(int o=0){x=o;}
        modint<mod> &operator = (int o){return x=o,*this;}
        modint<mod> &operator +=(modint<mod> o){return x=x+o.x>=mod?x+o.x-mod:x+o.x,*this;}
        modint<mod> &operator -=(modint<mod> o){return x=x-o.x<0?x-o.x+mod:x-o.x,*this;}
        modint<mod> &operator *=(modint<mod> o){return x=1ll*x*o.x%mod,*this;}
        modint<mod> &operator ^=(int b){
            modint<mod> a=*this,c=1;
            for(;b;b>>=1,a*=a)if(b&1)c*=a;
            return x=c.x,*this;
        }
        modint<mod> &operator /=(modint<mod> o){return *this *=o^=mod-2;}
        modint<mod> &operator +=(int o){return x=x+o>=mod?x+o-mod:x+o,*this;}
        modint<mod> &operator -=(int o){return x=x-o<0?x-o+mod:x-o,*this;}
        modint<mod> &operator *=(int o){return x=1ll*x*o%mod,*this;}
        modint<mod> &operator /=(int o){return *this *= ((modint<mod>(o))^=mod-2);}
    	template<class I>friend modint<mod> operator +(modint<mod> a,I b){return a+=b;}
        template<class I>friend modint<mod> operator -(modint<mod> a,I b){return a-=b;}
        template<class I>friend modint<mod> operator *(modint<mod> a,I b){return a*=b;}
        template<class I>friend modint<mod> operator /(modint<mod> a,I b){return a/=b;}
        friend modint<mod> operator ^(modint<mod> a,int b){return a^=b;}
        friend bool operator ==(modint<mod> a,int b){return a.x==b;}
        friend bool operator !=(modint<mod> a,int b){return a.x!=b;}
        bool operator ! () {return !x;}
        modint<mod> operator - () {return x?mod-x:0;}
    	modint<mod> &operator++(int){return *this+=1;}
    };
    const int N=4e6+5;
    
    const int mod=998244353;
    const modint<mod> GG=3,Ginv=modint<mod>(1)/3,I=86583718;
    struct poly{
    	vector<modint<mod>>a;
    	modint<mod>&operator[](int i){return a[i];}
    	int size(){return a.size();}
    	void resize(int n){a.resize(n);}
    };
    int rev[N];
    inline int ext(int n){int k=0;while((1<<k)<n)k++;return k;}
    inline void init(int k){int n=1<<k;for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));}
    inline void ntt(poly&a,int k,int typ){
    	int n=1<<k;
    	for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    	for(int mid=1;mid<n;mid<<=1){
    		modint<mod> wn=(typ>0?GG:Ginv)^((mod-1)/(mid<<1));
    		for(int r=mid<<1,j=0;j<n;j+=r){
    			modint<mod> w=1;
    			for(int k=0;k<mid;k++,w=w*wn){
    				modint<mod> x=a[j+k],y=w*a[j+k+mid];
    				a[j+k]=x+y,a[j+k+mid]=x-y;
    			}
    		}
    	}
    	if(typ<0){
    		modint<mod> inv=modint<mod>(1)/n;
    		for(int i=0;i<n;i++)a[i]*=inv;
    	}
    }
    inline poly operator*(poly a,poly b){
    	int n=a.size()+b.size()-1,k=ext(n);
    	a.resize(1<<k),b.resize(1<<k),init(k);
    	ntt(a,k,1);ntt(b,k,1);for(int i=0;i<(1<<k);i++)a[i]*=b[i];
    	ntt(a,k,-1),a.resize(n);return a;
    }
    poly a,b;
    int d,n,m; 
    modint<mod>fac[N],ans;
    signed main(){
    	fac[0]=1;for(int i=1;i<N;i++)fac[i]=fac[i-1]*i;
    	in::read(d,n,m);
    	if(n-2*m<0)cout<<0,exit(0);
    	if(n-2*m>=d)cout<<(modint<mod>(d)^n).x,exit(0);
    	a.resize(d+1);b.resize(d+1);
    	for(int i=0;i<=d;i++)a[i]=(modint<mod>(d-2*i+mod)^n)/fac[i],(i&1)&&(a[i]=-a[i]).x;
    	for(int i=0;i<=d;i++)b[i]=modint<mod>(1)/fac[i];
    	a=a*b;a.resize(d+1);
    	for(int i=0;i<=d;i++)a[i]=a[i]*fac[d]/(fac[d-i]*(modint<mod>(2)^i))*fac[i];
    	for(int i=0;i<=d;i++)b[d-i]=modint<mod>(1)/fac[i],(i&1)&&(b[d-i]=-b[d-i]).x;
    	a=a*b;for(int i=0;i<=n-2*m;i++)ans+=a[d+i]/fac[i];
    	out::write(ans.x);out::flush();
    }
    
  • 相关阅读:
    关于MySQL 最后一部安装阶段无法响应的问题
    为PHP 启用Mysql 的dll
    webcast终于改版了
    有意思的oracle转义字符
    Telnet协议详解及使用C# 用Socket 编程来实现Telnet协议
    我被百度悲剧了
    阻止 http://3b3.org/c.js恶意SQL注入
    驱动研究日记-链表+后备链表
    C# 执行汇编类
    Tuning and Slimming JBossAS
  • 原文地址:https://www.cnblogs.com/juruo-cjl/p/14243857.html
Copyright © 2011-2022 走看看