zoukankan      html  css  js  c++  java
  • Faster R-CNN CPU环境搭建

    操作系统:

    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ cat /etc/issue
    Ubuntu 14.04.2 LTS 
     l

    Python版本:

    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ python --version
    Python 2.7.6

    pip版本:

    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ pip --version
    pip 1.5.4 from /usr/lib/python2.7/dist-packages (python 2.7)

    环境变量情况:

    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/caffe-fast-rcnn$ echo $LD_LIBRARY_PATH
    
    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/caffe-fast-rcnn$ echo $PATH
    /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

    ~/.bashrc内容,可以看到所有和PATH以及LD_LIBRARY_PATH相关的内容都没有设置:

    # ~/.bashrc: executed by bash(1) for non-login shells.
    # added by Anaconda2 4.0.0 installer
    #export PATH="/home/bigtop/anaconda2/bin:$PATH"
    #export LD_LIBRARY_PATH="/home/bigtop/anaconda2/lib/":$LD_LIBRARY_PATH
    #export LD_LIBRARY_PATH="/lib/x86_64-linux-gnu/":$LD_LIBRARY_PATH

     

    1. 安装Caffe需要的依赖包:

    sudo apt-get install build-essential  # basic requirement
    sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler #required by caffe

    image

     

    使用完上面的命令后,依赖已经安装完毕,但是由于Ubuntu 14.04版本的原因,导致opencv相关的环境不能够正常的work。所以,我重新编译了一个OpenCV,版本为3.1.0。

    image

     

    在解压后的目录中执行:

    bigtop@bigtop-SdcOS-Hypervisor:~/tools/opencv-3.1.0$  cmake -DBUILD_TIFF=ON

    然后执行make 和make install

    2. 编译cafe-fast-rcnn

    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/caffe-fast-rcnn$ ls
    build       CMakeLists.txt   data        examples    LICENSE          Makefile.config~         models     scripts
    caffe.cloc  CONTRIBUTING.md  distribute  include     Makefile         Makefile.config.example  python     src
    cmake       CONTRIBUTORS.md  docs        INSTALL.md  Makefile.config  matlab                   README.md  tools
    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/caffe-fast-rcnn$ pwd
    /home/bigtop/py-faster-rcnn/caffe-fast-rcnn

    修改这个目录下的Makefile.config(如果没有这个文件,就直接cp Makefile.config.example Makefile.config)

    将CPU_ONLY := 1开关和WITH_PYTHON_LAYER开关打开:

    image

    image

    然后在该目录下执行:make –j8 && make pycaffe

    在此过程中,可能会出现各种和python相关的包缺失问题,这里记录下,以便查询:

    A》将caffe-fast-rcnn/python目录下的requirements下的依赖都装一遍:

    image

    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/caffe-fast-rcnn/python$ cat requirements.txt 
    Cython>=0.19.2
    numpy>=1.7.1
    scipy>=0.13.2
    scikit-image>=0.9.3
    matplotlib>=1.3.1
    ipython>=3.0.0
    h5py>=2.2.0
    leveldb>=0.191
    networkx>=1.8.1
    nose>=1.3.0
    pandas>=0.12.0
    python-dateutil>=1.4,<2
    protobuf>=2.5.0
    python-gflags>=2.0
    pyyaml>=3.10
    Pillow>=2.3.0
    six>=1.1.0

    执行如下命令:

    for req in $(cat requirements.txt); do pip install $req; done

    这里有一个小技巧,因为pip这个工具对应的网络非常的烂:

    Image

    这个时候,可以将其改为国内的镜像网站,速度将提升几个数量级,方法如下:

    新建~/.pip/pip.confg文件,内容如下:

    [global]
    index-url = http://pypi.douban.com/simple
    trusted-host = pypi.douban.com

    或者在安装一个软件包的时候使用-i选项:

    Image

    在我安装requirements.txt中涉及的依赖包的过程中,发现matplotlib始终没有安装成功,最后采用apt-get的方式进行了安装,如下:

    sudo apt-get install python-matplotlib

    B>opencv环境和caffe-fast-rcnn默认的Makefile配置有点小问题,cv::imread(cv:: String const&, int)找不到:

    Image

    解决方案:

    Image

    Image

    在一切都正常的情况下,对caffe-fast-rcnn进行make和make pycaffe的结果如下:

    Image

    编译好caffe-fast-rcnn后,在py-faster-rcnn/lib中执行make命令:

    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/lib$ make
    python setup.py build_ext --inplace
    running build_ext
    skipping 'utils/bbox.c' Cython extension (up-to-date)
    skipping 'nms/cpu_nms.c' Cython extension (up-to-date)
    skipping 'pycocotools/_mask.c' Cython extension (up-to-date)
    rm -rf build
    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/lib$

    3. 在安装配置好caffe-fast-rcnn后,修改py-faster-rcnn相关配置,让其模型可以在没有GPU的环境下运行:

    A>将 ~/py-faster-rcnn/lib/fast_rcnn/config.py的如下内容:

    image

    B>将 ~/py-faster-rcnn/tools/test_net.py和 ~/py-faster-rcnn/tools/train_net.py的caffe.set_mode_gpu()修改为caffe.set_mode_cpu().

    image

    image

    C>将~/py-faster-rcnn/lib/setup.py中,含有'nms.gpu_nms’的部分去掉,去掉后的内容如下:

    112 ext_modules = [
    113     Extension(
    114         "utils.cython_bbox",
    115         ["utils/bbox.pyx"],
    116         extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
    117         include_dirs = [numpy_include]
    118     ),
    119     Extension(
    120         "nms.cpu_nms",
    121         ["nms/cpu_nms.pyx"],
    122         extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
    123         include_dirs = [numpy_include]
    124     ),
    125     Extension(
    126         'pycocotools._mask',
    127         sources=['pycocotools/maskApi.c', 'pycocotools/_mask.pyx'],
    128         include_dirs = [numpy_include, 'pycocotools'],
    129         extra_compile_args={
    130             'gcc': ['-Wno-cpp', '-Wno-unused-function', '-std=c99']},
    131     ),
    132 ]

    D>做到上面三部后,还是不够的,还需要将:

    ../lib/fast_rcnn/nms_wrapper.py:9:#from nms.gpu_nms import gpu_nms

    注释掉:

    image

    否则,会抛出如下的异常:

    Traceback (most recent call last):
    File "./demo.py", line 18, in 
    from fast_rcnn.test import im_detect
    File ".../py-faster-rcnn-master/tools/../lib/fast_rcnn/test.py", line 17, in 
    from fast_rcnn.nms_wrapper import nms
    File ".../py-faster-rcnn-master/tools/../lib/fast_rcnn/nms_wrapper.py", line 11, in 
    from nms.gpu_nms import gpu_nms
    ImportError: No module named gpu_nms

    4. 运行demo.py

    在环境一切就绪的情况下,将faster的模型下载下来:

    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/data/scripts$ ls
    fetch_faster_rcnn_models.sh  fetch_imagenet_models.sh  fetch_selective_search_data.sh

    运行其中的./fetch_faster_rcnn_models.sh脚本就可以下载下来了。

    在/home/bigtop/py-faster-rcnn/tools目录下运行, python demo.py --cpu:

    Image

    最后的结果如下:

    1

    2

    image

    image

    image

    注意:由于我是在没有图形界面终端上运行的,默认情况下demo.py会假设运行在有图形界面的环境中,需要修改demo.py的地方如下:

    首先,在demo.py代码的最前面,注意一定是最前面,否则可能不成功,加入如下两行:

    image

    其次,在plt.draw()的地方加入savefig()语句,将结果保存成jpg文件形式:

    image

    5. 其他在安装过程中遇到的问题(比较杂,记录于此),如果上面的四个步骤进行的比较顺利的话,是不会遇到下面这些问题的:

    5.1 No module named skimage.io:

    Image

    5.2 下面这个问题是因为缺少,easydict,使用 sudo pip install easydict可以解决:

    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ python demo.py  --cpu
    Traceback (most recent call last):
      File "demo.py", line 17, in <module>
        from fast_rcnn.config import cfg
      File "/home/bigtop/py-faster-rcnn/tools/../lib/fast_rcnn/config.py", line 23, in <module>
        from easydict import EasyDict as edict
    ImportError: No module named easydict
    bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ sudo pip install  easydict
    Downloading/unpacking easydict
      Downloading easydict-1.6.zip
      Running setup.py (path:/tmp/pip_build_root/easydict/setup.py) egg_info for package easydict
    
    Installing collected packages: easydict
      Running setup.py install for easydict
    
      Could not find .egg-info directory in install record for easydict
    Successfully installed easydict
    Cleaning up...
    
    sudo pip install  easydict

    5.3 这个问题是因为scipy安装出现问题,将其删掉:rm -fr /tmp/pip_build_root/scipy/,然后重新安装可以解决:

    d --compile failed with error code 1 in /tmp/pip_build_root/scipy
    Traceback (most recent call last):
      File "/usr/bin/pip", line 9, in <module>
        load_entry_point('pip==1.5.4', 'console_scripts', 'pip')()
      File "/usr/lib/python2.7/dist-packages/pip/__init__.py", line 235, in main
        return command.main(cmd_args)
      File "/usr/lib/python2.7/dist-packages/pip/basecommand.py", line 161, in main
        text = '
    '.join(complete_log)
    UnicodeDecodeError: 'ascii' codec can't decode byte 0xe2 in position 98: ordinal not in range(128)

    网上有很多搭建caffe的教程,都提到了用Anaconda,本来这个包是很好的,它可以解决很多python依赖的问题,可惜的是,它和我用的Ubuntu版本兼容性出现了问题,所以,我最终放弃了Anaconda,所有的python依赖都通过pip或者是apt-get进行了安装。

    5.4 报下面这个错误,是因为caffe的环境都没有准备好,很有可能是没有执行make pycaffe:

    Traceback (most recent call last):
      File "detector.py", line 29, in <module>
        import caffe
      File "/python/caffe/__init__.py", line 1, in <module>
        from .pycaffe import Net
      File "/caffe/pycaffe.py", line 6, in <module>
        from ._caffe import CaffeNet
    ImportError: No module named _caffe

    5.5 error: undefined reference to `TIFFIsTiled@LIBTIFF_4.0'

    error: undefined reference to `TIFFIsTiled@LIBTIFF_4.0'

    这个就是上文中提到的,使用ubuntu自带的opencv库会出现的问题,解决办法就是重新编译opencv。

    6. 总结

    整个过程还是颇费周折,因为caffe依赖的东西太多,环境搭建费事费力,最好的办法还是弄一个docker镜像,这样才能够从环境搭建的苦海中解脱,可惜的是我从daocloud上down下来的镜像是不能够运行在cpu上的。

    参考文档:

    1. http://caffe.berkeleyvision.org/installation.html  caffe官方文档

    2. https://github.com/BVLC/caffe/issues/1276  cv::imread(cv::String const&, int)' collect2: error

    3.https://github.com/BVLC/caffe/issues/263   can't import _caffe module

    4.https://github.com/rbgirshick/py-faster-rcnn/issues/8  ImportError: No module named gpu_nms

    5.http://www.cnblogs.com/empty16/p/4828476.html  caffe环境搭建文章

    6.https://github.com/BVLC/caffe/issues/50  make pycaffe error

    7.http://blog.csdn.net/tangwei2014/article/details/45442275  Fast RCNN Ubuntu安装笔记

    8.http://topmanopensource.iteye.com/blog/2004853  pip镜像加速

    9. https://github.com/BVLC/caffe/issues/1276 ../lib/libcaffe.so: undefined reference to cv::imread

    10. https://groups.google.com/forum/#!topic/caffe-users/wKYe45FKSqE  Installation error: undefined reference to `TIFFIsTiled@LIBTIFF_4.0'

    11. https://groups.google.com/forum/#!topic/caffe-users/0PrZlro7QbU  undefined reference to `lzma_index_buffer_decode@XZ_5.0

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

  • 相关阅读:
    创建供应商-采购模块
    定义容差组
    前台创建供应商-财务角度
    对供应商账户组分配编号范围
    拓端数据tecdat|R语言建立和可视化混合效应模型mixed effect model
    拓端数据tecdat|R语言建模收入不平等:分布函数拟合及洛伦兹曲线(Lorenz curve)
    拓端数据tecdat|R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型
    拓端数据tecdat|R语言ARIMA,SARIMA预测道路交通流量时间序列:季节性、周期性
    拓端数据tecdat|ARIMA模型预测CO2浓度时间序列
    拓端数据tecdat|R语言基于递归神经网络RNN的温度时间序列预测
  • 原文地址:https://www.cnblogs.com/justinzhang/p/5386837.html
Copyright © 2011-2022 走看看