zoukankan      html  css  js  c++  java
  • 详解k8s原生的集群监控方案(Heapster+InfluxDB+Grafana)

    1、浅析监控方案

    heapster是一个监控计算、存储、网络等集群资源的工具,以k8s内置的cAdvisor作为数据源收集集群信息,并汇总出有价值的性能数据(Metrics):cpu、内存、network、filesystem等,然后将这些数据输出到外部存储(backend),如InfluxDB,最后再通过相应的UI界面进行可视化展示,如grafana。 另外heapster的数据源和外部存储都是可插拔的,所以可以很灵活的组建出很多监控方案,如:Heapster+ElasticSearch+Kibana等等。
    Heapster的整体架构图:

    2、部署

    本篇我们将实践 Heapster + InfluxDB + Grafana 的监控方案。使用官方提供的yml文件有一些小问题,请参考以下改动和说明:

    2.1、创建InfluxDB资源对象

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: monitoring-influxdb
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          task: monitoring
          k8s-app: influxdb
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: influxdb
        spec:
          containers:
          - name: influxdb
            image: k8s.gcr.io/heapster-influxdb-amd64:v1.3.3
            volumeMounts:
            - mountPath: /data
              name: influxdb-storage
          volumes:
          - name: influxdb-storage
            emptyDir: {}
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        task: monitoring
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: monitoring-influxdb
      name: monitoring-influxdb
      namespace: kube-system
    spec:
      type: NodePort
      ports:
      - nodePort: 31001
        port: 8086
        targetPort: 8086
      selector:
        k8s-app: influxdb
    

    注意:这里我们使用NotePort暴露monitoring-influxdb服务在主机的31001端口上,那么InfluxDB服务端的地址:http://[host-ip]:31001 ,记下这个地址,以便创建heapster和为grafana配置数据源时,可以直接使用。

    2.1、创建Grafana资源对象

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: monitoring-grafana
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          task: monitoring
          k8s-app: grafana
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: grafana
        spec:
          containers:
          - name: grafana
            image: k8s.gcr.io/heapster-grafana-amd64:v4.4.3
            ports:
            - containerPort: 3000
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/ssl/certs
              name: ca-certificates
              readOnly: true
            - mountPath: /var
              name: grafana-storage
            env:
            - name: INFLUXDB_HOST
              value: monitoring-influxdb
            - name: GF_SERVER_HTTP_PORT
              value: "3000"
              # The following env variables are required to make Grafana accessible via
              # the kubernetes api-server proxy. On production clusters, we recommend
              # removing these env variables, setup auth for grafana, and expose the grafana
              # service using a LoadBalancer or a public IP.
            - name: GF_AUTH_BASIC_ENABLED
              value: "false"
            - name: GF_AUTH_ANONYMOUS_ENABLED
              value: "true"
            - name: GF_AUTH_ANONYMOUS_ORG_ROLE
              value: Admin
            - name: GF_SERVER_ROOT_URL
              # If you're only using the API Server proxy, set this value instead:
              # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
              value: /
          volumes:
          - name: ca-certificates
            hostPath:
              path: /etc/ssl/certs
          - name: grafana-storage
            emptyDir: {}
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
        # If you are NOT using this as an addon, you should comment out this line.
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: monitoring-grafana
      name: monitoring-grafana
      namespace: kube-system
    spec:
      # In a production setup, we recommend accessing Grafana through an external Loadbalancer
      # or through a public IP.
      # type: LoadBalancer
      # You could also use NodePort to expose the service at a randomly-generated port
      type: NodePort
      ports:
      - nodePort: 30108
        port: 80
        targetPort: 3000
      selector:
        k8s-app: grafana
    

    虽然Heapster已经预先配置好了GrafanaDatasourceDashboard,但是为了方便访问,这里我们使用NotePort暴露monitoring-grafana服务在主机的30108上,那么Grafana服务端的地址:http://registry.wuling.com:30108 ,通过浏览器访问,为Grafana修改数据源,如下:

    标红的地方,为上一步记录下的InfluxDB服务端的地址。

    2.2、创建Heapster资源对象

    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: heapster
      namespace: kube-system
    ---
    apiVersion: extensions/v1beta1
    kind: Deployment
    metadata:
      name: heapster
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          task: monitoring
          k8s-app: heapster
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: heapster
        spec:
          serviceAccountName: heapster
          containers:
          - name: heapster
            image: k8s.gcr.io/heapster-amd64:v1.4.2
            imagePullPolicy: IfNotPresent
            command:
            - /heapster
            - --source=kubernetes:https://kubernetes.default 
            - --sink=influxdb:http://150.109.39.33:31001  # 这里填写刚刚记录下的InfluxDB服务端的地址。
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        task: monitoring
        # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
        # If you are NOT using this as an addon, you should comment out this line.
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: Heapster
      name: heapster
      namespace: kube-system
    spec:
      ports:
      - port: 80
        targetPort: 8082
      selector:
        k8s-app: heapster
    

    --source 为heapster指定获取集群信息的数据源。参考:https://github.com/kubernetes/heapster/blob/master/docs/source-configuration.md
    --sink 为heaster指定后端存储,这里我们使用InfluxDB,其他的,请参考:https://github.com/kubernetes/heapster/blob/master/docs/sink-owners.md
    这里heapster留下了一个的坑,请继续往下看,当我部署完heapster,查看Heapster容器组的标准输出:

    很多人都以为是https或者k8s配置的问题,于是去就慌忙的去配置InSecure http方式,导致坑越来越深,透明度越来越低,更是无从下手,我也是这样弄了很久,都较上劲了,此处省略一万字。。。,当这些路子都走遍了,再次品读下面的原文:

    才发现是权限的问题,heaster默认使用一个令牌(Token)与ApiServer进行认证,通过查看heapster.yml发现 serviceAccountName: heapster ,现在明白了吧,就是heaster没有权限,那么如何授权呢-----给heaster绑定一个有权限的角色就行了,如下:

    apiVersion: rbac.authorization.k8s.io/v1beta1
    kind: ClusterRoleBinding
    metadata:
      name: heapster
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: cluster-admin
    subjects:
    - kind: ServiceAccount
      name: heapster
      namespace: kube-system
    

    当创建heapster资源的时候,直接把这段代码加上,就行了。

    3、从不同维度查看应用程序性能指标

    在k8s集群中,应用程序的性能指标,需要从不同的维度(containers, pods, services, and whole clusters)进行统计。以便于使用户深入了解他们的应用程序是如何执行的以及可能出现的应用程序瓶颈。

    3.1、通过dashboard查看集群概况





    整个监控方案部署成功后,从上图可以看到,在不同粒度/维度下,dashboard上可以呈现对象的具体CPU和内存使用率。

    3.2、通过Grafana查看集群详情(cpu、memory、filesystem、network)

    通过Grafana可以查看某个Node或Pod的所有资源使用率,包括集群节点、不同NameSpace下的单个Pod等,一部分截图如下所示:






    从上面可以看到,Heapster无缝衔接Grafana,提供了完美的数据展示,很直观、友好。我们也可以学习 Grafana 来自定制出更美观和满足特定业务需求的Dashboard

    4、总结

    本篇我们详解了k8s原生的监控方案,它主要监控的是podnode,对于kubernetes其他组件(API ServerSchedulerController Manager等)的监控显得力不从心,而prometheus(一套开源的监控&报警&时间序列数据库的组合)功能更全面,后面有时间会进行实战。监控是一个非常大的话题,监控的目的是为预警,预警的目的是为了指导系统自愈。只有把 监控=》预警 =》自愈 三个环节都完成了,实现自动对应用程序性能和故障管理,才算得上是一个真正意义的应用程序性能管理系统(APM),所以这个系列会一直朝着这个目标努力下去,请大家继续关注。如果有什么好的想法,欢迎评论区交流。

    延伸阅读

    https://github.com/kubernetes/heapster

    如果你觉得本篇文章对您有帮助的话,感谢您的【推荐】
    如果你对 kubernets 感兴趣的话可以关注我,我会定期的在博客分享我的学习心得

    做一个有底蕴的软件工作者
  • 相关阅读:
    无题
    赌对了
    赌:
    这次是真的再见了,oi退役回忆录
    线段树(lazy标记)
    《挑战》2.1 POJ POJ 1979 Red and Black (简单的DFS)
    《挑战》2.1 POJ 2386 Lake Counting (简单的dfs)
    TC安装全系列教程
    ProblemC 剪花布条(KMP基础)
    多校+CF简单题
  • 原文地址:https://www.cnblogs.com/justmine/p/8723467.html
Copyright © 2011-2022 走看看