一、简介
并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。 Stream API 可以声明性地通过 parallel() 与 sequential() 在并行流与顺序流之间进行切换。
二、了解 Fork/Join 框架
Fork/Join 框架: 就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总。
三、Fork/Join 框架与传统线程池的区别
采用 “工作窃取”模式( work-stealing):当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。
相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的处理方式上。在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态。而在fork/join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行。那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行。这种方式减少了线程的等待时间,提高了性能。
四、示例
import java.util.concurrent.ForkJoinPool; import java.util.concurrent.ForkJoinTask; import java.util.stream.LongStream; import org.junit.Test; public class TestForkJoin { @Test public void test1() { long start = System.currentTimeMillis(); ForkJoinPool pool = new ForkJoinPool(); ForkJoinTask<Long> task = new ForkJoinCalculate(0L, 10000000000L); long sum = pool.invoke(task); System.out.println(sum); long end = System.currentTimeMillis(); System.out.println("耗费的时间为: " + (end - start)); //112-1953-1988-2654-2647-20663-113808 } @Test public void test2() { long start = System.currentTimeMillis(); long sum = 0L; for (long i = 0L; i <= 10000000000L; i++) { sum += i; } System.out.println(sum); long end = System.currentTimeMillis(); System.out.println("耗费的时间为: " + (end - start)); //34-3174-3132-4227-4223-31583 } @Test public void test3() { long start = System.currentTimeMillis(); Long sum = LongStream.rangeClosed(0L, 10000000000L) .parallel() .sum(); System.out.println(sum); long end = System.currentTimeMillis(); System.out.println("耗费的时间为: " + (end - start)); //2061-2053-2086-18926 } }
ForkJoinCalculate
import java.util.concurrent.RecursiveTask; public class ForkJoinCalculate extends RecursiveTask<Long> { private long start; private long end; private static final long THRESHOLD = 10000L; //临界值 public ForkJoinCalculate(long start, long end) { this.start = start; this.end = end; } @Override protected Long compute() { long length = end - start; if (length <= THRESHOLD) { long sum = 0; for (long i = start; i <= end; i++) { sum += i; } return sum; } else { long middle = (start + end) / 2; ForkJoinCalculate left = new ForkJoinCalculate(start, middle); left.fork(); //拆分,并将该子任务压入线程队列 ForkJoinCalculate right = new ForkJoinCalculate(middle + 1, end); right.fork(); return left.join() + right.join(); } } }