Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Solution:
public class CountingBits { /** * Function II Dynamic Programming * @param num * @return bits */ public int[] countBits(int num) { int[] bits = new int[num + 1]; for (int i = 0; i <= num; i++) { if (i % 2 == 0) { // Even Number bits[i] = bits[i / 2]; } else { bits[i] = bits[i / 2] + 1; // Odd Number } } return bits; } /** * Function I Bit Manipulation * @param n input number * @return bit */ private int countBit(int n) { int bit = 0; while (n > 0) { if ((n & 1) == 1) bit++; n = n >> 1; } return bit; } }
GitHub:LeetCode