zoukankan      html  css  js  c++  java
  • tensorflow的数据输入

    tensorflow有两种数据输入方法,比较简单的一种是使用feed_dict,这种方法在画graph的时候使用placeholder来站位,在真正run的时候通过feed字典把真实的输入传进去。比较简单不再介绍。

    比较恼火的是第二种方法,直接从文件中读取数据(其实第一种也可以我们自己从文件中读出来之后使用feed_dict传进去,但方法二tf提供很完善的一套类和函数形成一个类似pipeline一样的读取线):
    1.使用tf.train.string_input_producer函数把我们需要的全部文件打包为一个tf内部的queue类型,之后tf开文件就从这个queue中取目录了,要注意一点的是这个函数的shuffle参数默认是True,也就是你传给他文件顺序是1234,但是到时候读就不一定了,我一开始每次跑训练第一次迭代的样本都不一样,还纳闷了好久,就是这个原因。

    files_in = ["./data/data_batch%d.bin" % i for i in range(1, 6)]
    files = tf.train.string_input_producer(files_in)

    2.搞一个reader,不同reader对应不同的文件结构,比如度bin文件tf.FixedLengthRecordReader就比较好,因为每次读等长的一段数据。如果要读什么别的结构也有相应的reader。

    reader = tf.FixedLengthRecordReader(record_bytes=1+32*32*3)

    3.用reader的read方法,这个方法需要一个IO类型的参数,就是我们上边string_input_producer输出的那个queue了,reader从这个queue中取一个文件目录,然后打开它经行一次读取,reader的返回是一个tensor(这一点很重要,我们现在写的这些读取代码并不是真的在读数据,还是在画graph,和定义神经网络是一样的,这时候的操作在run之前都不会执行,这个返回的tensor也没有值,他仅仅代表graph中的一个结点)。

    key, value = reader.read(files)

    4.对这个tensor做些数据与处理,比如CIFAR1-10中label和image数据是糅在一起的,这里用slice把他们切开,切成两个tensor(注意这个两个tensor是对应的,一个image对一个label,对叉了后便训练就完了),然后对image的tensor做data augmentation。

    data = tf.decode_raw(value, tf.uint8)
    label = tf.cast(tf.slice(data, [0], [1]), tf.int64)
    raw_image = tf.reshape(tf.slice(data, [1], [32*32*3]), [3, 32, 32])
    image = tf.cast(tf.transpose(raw_image, [1, 2, 0]), tf.float32)
    
    lr_image = tf.image.random_flip_left_right(image)
    br_image = tf.image.random_brightness(lr_image, max_delta=63)
    rc_image = tf.image.random_contrast(br_image, lower=0.2, upper=1.8)
    
    std_image = tf.image.per_image_standardization(rc_image)

    5.这时候可以发现,这个tensor代表的是一个样本([高管道]),但是训练网络的时候的输入一般都是一推样本([样本数宽*管道]),我们就要用tf.train.batch或者tf.train.shuffle_batch这个函数把一个一个小样本的tensor打包成一个高一维度的样本batch,这些函数的输入是单个样本,输出就是4D的样本batch了,其内部原理似乎是创建了一个queue,然后不断调用你的单样本tensor获得样本,直到queue里边有足够的样本,然后一次返回一堆样本,组成样本batch。

    images, labels = tf.train.batch([std_image, label],
                               batch_size=100,
                               num_threads=16,
                               capacity=int(50000* 0.4 + 3 * batch_size))

    5.事实上一直到上一部的images这个tensor,都还没有真实的数据在里边,我们必须用Session run一下这个4D的tensor,才会真的有数据出来。这个原理就和我们定义好的神经网络run一下出结果一样,你一run这个4D tensor,他就会顺着自己的operator找自己依赖的其他tensor,一路最后找到最开始reader那里。

    除了上边讲的原理,其中还要注意几点
    1.tf.train.start_queue_runners(sess=sess)这一步一定要运行,且其位置要在定义好读取graph之后,在真正run之前,其作用是把queue里边的内容初始化,不跑这句一开始string_input_producer那里就没用,整个读取流水线都没用了。

    training_images = tf.train.batch(XXXXXXXXXXXXXXX)
    tf.train.start_queue_runners(sess=self.sess)
    real_images = sess.run(training_images)

    2.image和label一定要一起run,要记清楚我们的image和label是在一张graph里边的,跑一次那个graph,这两个tensor都会出结果,且同一次跑出来的image和label才是对应的,如果你run两次,第一次为了拿image第二次为了拿label,那整个就叉了,因为第一次跑出来第0到100号image和0到100号label,第二次跑出来第100到200的image和第100到200的label,你拿到了0~100的image和100~200的label,整个样本分类全不对,最后网络肯定跑不出结果。

    training_images, training_labels = read_image()
    tf.train.start_queue_runners(sess=self.sess)
    real_images = sess.run(training_images) # 读出来是真的图片,但是和label对不上
    real_labels = sess.run(training_labels) # 读出来是真的label,但是和image对不上
    
    # 正确调用方法,通过跑一次graph,将成套的label和image读出来
    real_images, real_labels = sess.run([training_images, training_labels])
  • 相关阅读:
    sqlite学习笔记9:C语言中使用sqlite之插入数据
    基于对话框的应用程序,点击button打开一个网页
    数组溢界地址的正确使用: 即 int a[6] 中的 a[-1] 和 a[6] 正确使用
    BeagleBone硬件概览Ethernet端口板载LEDc重置按钮等介绍
    ARP缓存记录种类动态条目和静态条目
    ArduinoYun的电源插座
    Xamarin开发Anroid应用介绍
    学习NGUI前的准备NGUI的相关信息
    Xamarin Android开发实战(上册)大学霸内部资料
    NGUI全面实践教程(大学霸内部资料)
  • 原文地址:https://www.cnblogs.com/jyxbk/p/9155556.html
Copyright © 2011-2022 走看看