说实话,这次的初赛比上一次的要简单。
不过还有些变态的题目。
- 在一条长度为1 的线段上随机取两个点,则以这两个点为端点的线段的期望
长度是( )。
A. 1 / 2
B. 1 / 3
C. 2 / 3
D. 3 / 5
赛场做法
这题,一眼看下去,我就有点懵了。
后来,又想想有关期望的性质,然后……
画出一条线段,平均分成几份,将所有情况求出来,然后算出期望值。
算了两次,第一次分4份,第二次分6分。
结果都是
证明
我在网上翻到一篇有关这个的证明的博客,结果,那博客秀了强大的微积分……
后来,同学告诉我一个比较好理解的证法:
考虑归纳证明
假设现在有一条线段,长度为。
利用分治的思想,在中间取个中点,设为。它将线段等分成两段。
设最终得到的线段的端点分别为,。
根据它们的位置,大体上有两种情况:
- 和在异侧,则。显然,在期望情况下,两者皆为,所以,。
- 和在同侧,则
得证。
- 假设一台抽奖机中有红、蓝两色的球,任意时刻按下抽奖按钮,都会等概率
获得红球或蓝球之一。有足够多的人每人都用这台抽奖机抽奖,假如他们的
策略均为:抽中蓝球则继续抽球,抽中红球则停止。最后每个人都把自己获
得的所有球放到一个大箱子里,最终大箱子里的红球与蓝球的比例接近于
( )。
A. 1 : 2
B. 2 : 1
C. 1 : 3
D. 1 : 1
赛场做法&证明
其实这个比较简单。
设蓝球期望为,则。
解得
方程 a*b = (a or b) * (a and b),在 a,b 都取 [0, 31] 中的整数时,
共有_____组解。(*表示乘法;or 表示按位或运算;and 表示按位与运算)
赛场做法
第一眼看下去,就觉得这一定是一道神仙题。
果然,还真TM是神仙题。
我先考虑了一个情况:
如果和中,这两个数由和组成。
那么很显然的是,一定有其中一个是另外一个的子集。
然后乱搞一波,减去重复的,得出。
然后我还觉得有其它的情况,结果想了半天,没有想出来,最后就交了这个答案……
于是莫名切了。
证明
设
得证。
然后就没有什么别的特别难的题目了。
总结一下:
- 期望题分治看看。
- 位运算有很多规律,有时候异或很有用。