zoukankan      html  css  js  c++  java
  • [JZOJ6355] 【NOIP2019模拟】普 24/100

    题目

    题目大意

    给你一个序列,对于所有(kin [1,n]),求长度为(k)的子序列的最大权值,权值为(a_1-a_2+a_3-...pm a_k)


    思考历程

    这题显然可以背包对吧……
    所以就直接背包吧……
    比赛的时候我还想到了分治,但由于两边合在一起很慢,所以就直接打暴力了。


    正解

    题解的线段树做法看得并不是很懂。
    所以我就说一个分治的方法。
    首先题解有个结论:(k)的子序列必然是(k-2)的子序列中插入两个数。
    记住是插入,而不仅仅是往左右两边扩展。
    为什么呢?考虑反证,如果不是这样,就是(k-2)的子序列中除去若干个数,然后再插入若干的数。这样实际上相当于从(k-x)的状态转移过来,其中(x>2)
    所以我们只需要证明从(k-2)转移过来比更前面的地方转移过来更优。
    假设从(k-3)转移过来(其它的情况类似)。
    我们将(k-2)的序列中按顺序插入(x)(y),那么整个序列被分成几个部分(AxByC),权值为(Apm x-Bpm y+C)(我们不需要关系(x)(y)的正负,(B)是原本的贡献,在插入之后符号要翻过来)。
    (k-3)的序列中插入(x)(y)(z)(我们假设(x)(y)插入的位置相同),分成:(AxByDzE),权值为(A pm x-B pm y+D pm z-E)
    比较一下,前半部分抵消了,就变成(C)(D pm z-E)
    它们都可以看做一个整体。如果后面的更优,它肯定会在之前替代(C)。所以前者是更优一些的。
    这就证完了。

    然后考虑分治。分治的重点是合并左右两个区间的答案。
    考虑由(s)转移到(s+2)。设转移(s)的时候左边用了(s_1)个,右边用了(s_2)个。
    分类讨论看看新插入的两个点放哪边,就有如下三种情况:

    1. 左边(s_1+2),右边(s_2)
    2. 左边(s_1+1),右边(s_2+1)
    3. 左边(s_1),右边(s_2+2).

    根据上面的那个结论,前后两种情况是没有问题的。问题在于第二种情况。
    由于是(+1),所以就不能用那个结论。
    然而,我们发现,在左边(s1)或右边(s2)的状态中各插一个,其实也算在左边(s1+1)或右边(s2+1).的状态中。也就是说,(s1+1)的状态大于等于(s1)插一个转移过去的状态。
    所以这样操作没有影响。


    代码

    using namespace std;
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <climits>
    #define N 100010
    int n,a[N];
    int _fmn[N],_fmx[N];
    int gmn[N],gmx[N];
    inline int at(int *a,int x){return x?a[x]:0;}
    void dfs(int l,int r){
    	int *fmn=_fmn+l-1,*fmx=_fmx+l-1;
    	if (l==r){
    		fmn[1]=fmx[1]=a[l];
    		return;
    	} 
    	int mid=l+r>>1;
    	dfs(l,mid),dfs(mid+1,r);
    	int *lmn=_fmn+l-1,*lmx=_fmx+l-1,*rmn=_fmn+mid,*rmx=_fmx+mid,s1=0,s2=0;
    	for (int i=2;i<=r-l+1;i+=2){
    		int ts1,ts2,v=INT_MIN;
    		if (s2+2<=r-mid){
    			int tmp=(s1&1?at(lmx,s1)-at(rmn,s2+2):at(lmx,s1)+at(rmx,s2+2));
    			if (tmp>v)
    				v=tmp,ts1=s1,ts2=s2+2;
    		}
    		if (s1+1<=mid-l+1 && s2+1<=r-mid){
    			int tmp=(s1+1&1?at(lmx,s1+1)-at(rmn,s2+1):at(lmx,s1+1)+at(rmx,s2+1));
    			if (tmp>v)
    				v=tmp,ts1=s1+1,ts2=s2+1;
    		}
    		if (s1+2<=mid-l+1){
    			int tmp=(s1+2&1?at(lmx,s1+2)-at(rmn,s2):at(lmx,s1+2)+at(rmx,s2));
    			if (tmp>v)
    				v=tmp,ts1=s1+2,ts2=s2;
    		}
    		gmx[i]=v;
    		s1=ts1,s2=ts2;
    	}
    	s1=0,s2=0;
    	for (int i=2;i<=r-l+1;i+=2){
    		int ts1,ts2,v=INT_MAX;
    		if (s2+2<=r-mid){
    			int tmp=(s1&1?at(lmn,s1)-at(rmx,s2+2):at(lmn,s1)+at(rmn,s2+2));
    			if (tmp<v)
    				v=tmp,ts1=s1,ts2=s2+2;
    		}
    		if (s1+1<=mid-l+1 && s2+1<=r-mid){
    			int tmp=(s1+1&1?at(lmn,s1+1)-at(rmx,s2+1):at(lmn,s1+1)+at(rmn,s2+1));
    			if (tmp<v)
    				v=tmp,ts1=s1+1,ts2=s2+1;
    		}
    		if (s1+2<=mid-l+1){
    			int tmp=(s1+2&1?at(lmn,s1+2)-at(rmx,s2):at(lmn,s1+2)+at(rmn,s2));
    			if (tmp<v)
    				v=tmp,ts1=s1+2,ts2=s2;
    		}
    		gmn[i]=v;
    		s1=ts1,s2=ts2;
    	}
    	if (lmx[1]>rmx[1])
    		s1=1,s2=0,gmx[1]=lmx[1];
    	else
    		s1=0,s2=1,gmx[1]=rmx[1];
    	for (int i=3;i<=r-l+1;i+=2){
    		int ts1,ts2,v=INT_MIN;
    		if (s2+2<=r-mid){
    			int tmp=(s1&1?at(lmx,s1)-at(rmn,s2+2):at(lmx,s1)+at(rmx,s2+2));
    			if (tmp>v)
    				v=tmp,ts1=s1,ts2=s2+2;
    		}
    		if (s1+1<=mid-l+1 && s2+1<=r-mid){
    			int tmp=(s1+1&1?at(lmx,s1+1)-at(rmn,s2+1):at(lmx,s1+1)+at(rmx,s2+1));
    			if (tmp>v)
    				v=tmp,ts1=s1+1,ts2=s2+1;
    		}
    		if (s1+2<=mid-l+1){
    			int tmp=(s1+2&1?at(lmx,s1+2)-at(rmn,s2):at(lmx,s1+2)+at(rmx,s2));
    			if (tmp>v)
    				v=tmp,ts1=s1+2,ts2=s2;
    		}
    		gmx[i]=v;
    		s1=ts1,s2=ts2;
    	}
    	if (lmn[1]<rmn[1])
    		s1=1,s2=0,gmn[1]=lmn[1];
    	else
    		s1=0,s2=1,gmn[1]=rmn[1];
    	for (int i=3;i<=r-l+1;i+=2){
    		int ts1,ts2,v=INT_MAX;
    		if (s2+2<=r-mid){
    			int tmp=(s1&1?at(lmn,s1)-at(rmx,s2+2):at(lmn,s1)+at(rmn,s2+2));
    			if (tmp<v)
    				v=tmp,ts1=s1,ts2=s2+2;
    		}
    		if (s1+1<=mid-l+1 && s2+1<=r-mid){
    			int tmp=(s1+1&1?at(lmn,s1+1)-at(rmx,s2+1):at(lmn,s1+1)+at(rmn,s2+1));
    			if (tmp<v)
    				v=tmp,ts1=s1+1,ts2=s2+1;
    		}
    		if (s1+2<=mid-l+1){
    			int tmp=(s1+2&1?at(lmn,s1+2)-at(rmx,s2):at(lmn,s1+2)+at(rmn,s2));
    			if (tmp<v)
    				v=tmp,ts1=s1+2,ts2=s2;
    		}
    		gmn[i]=v;
    		s1=ts1,s2=ts2;
    	}
    	for (int i=1;i<=r-l+1;++i)
    		fmn[i]=gmn[i],fmx[i]=gmx[i];
    }
    int main(){
    	freopen("pe.in","r",stdin);
    	freopen("pe.out","w",stdout);
    	scanf("%d",&n);
    	for (int i=1;i<=n;++i)
    		scanf("%d",&a[i]);
    	dfs(1,n);
    	for (int i=1;i<=n;++i)
    		printf("%d ",_fmx[i]);
    	return 0;
    }
    

    总结

    结论是要靠猜的……

  • 相关阅读:
    制作一款3D炸弹超人游戏
    C#集合中的Add与AddRange方法
    NGUI与EasyTouch结合使用
    Buff系统的实现
    Buff系统框架设计
    Buff系统设计
    Linux 服务管理两种方式service和systemctl
    centos上为新创建的用户(git)指定根目录并生成公钥和私钥
    centos7安装php7
    centos7上安装mysql8(下)
  • 原文地址:https://www.cnblogs.com/jz-597/p/11536060.html
Copyright © 2011-2022 走看看