Description
详见OJ
Solution
第一眼看上去好像斜率(DP),但仔细一看发现不能用单调队列维护。
然后(GG)。
正解使用单调栈来维护。
我们发现,我们维护的单调栈(g[])的(a[])是呈单调不下降的。
对于新加入的点i,我们需要将单调栈中(a[])大于(a[i])的弹出栈中,
因为这些点的答案需要重新计算。
对于弹出的(f[g[]])我们与(f[i-1])取(max),然后更新答案,并将点(i)加入栈中。
Code
#include <cstdio>
#define N 200010
#define ll long long
#define mem(x, a) memset(x, a, sizeof x)
#define fo(x, a, b) for (int x = a; x <= b; x++)
#define fd(x, a, b) for (int x = a; x >= b; x--)
using namespace std;
const int inf = 2147483647;
int n, a[N], g[N], len = 0;
ll A, B, C, D, f[N], ma[N], t;
inline int read()
{
int x = 0, f = 0; char c = getchar();
while (c < '0' || c > '9') f = (c == '-') ? 1 : f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
return f ? -x : x;
}
ll solve(int x) {return A * x * x * x + B * x * x + C * x + D;}
ll max(ll x, ll y) {return x > y ? x : y;}
int main()
{
freopen("min.in", "r", stdin);
freopen("min.out", "w", stdout);
n = read(), A = read(), B = read(), C = read(), D = read();
fo(i, 1, n) a[i] = read();
fo(i, 1, n)
{
t = f[i - 1];
while (len && a[g[len]] >= a[i]) t = ma[len] > t ? ma[len] : t, len--;
g[++len] = i, ma[len] = t;
f[i] = t + solve(a[i]);
if (len > 1 && f[g[len - 1]] > f[i]) f[i] = f[g[len - 1]];
}
printf("%lld
", f[n]);
return 0;
}