zoukankan      html  css  js  c++  java
  • gmoj 3457. 【NOIP2013模拟联考3】沙耶的玩偶(doll)

    (Problem)

    给你一张图,有些点可以走,剩下不能走。
    只能向下走,走(R*C)(C*R)。求走完剩下所有可走点的最小路径数。

    (Solution)

    发现这种题暴力都比较难写,考虑特殊做法(网络流)。
    发现当可走点之间连了一条边以后,路径数就会(-1),而且每个点只会被连一次。
    可以想到二分图匹配,每个点向可以走的点连边,然后二分图最大匹配的值就是可以连的边数了。
    那么答案就是可走点个数-最大匹配值。当然可以用网络流来实现。

    (Code)

    #include <cstdio>
    #include <algorithm>
    #define N 110
    #define inf 1010580540
    #define ll long long
    #define mem(x, a) memset(x, a, sizeof x)
    #define mpy(x, y) memcpy(x, y, sizeof y)
    #define fo(x, a, b) for (int x = (a); x <= (b); x++)
    #define fd(x, a, b) for (int x = (a); x >= (b); x--)
    #define go(x) for (int p = tail[x], v; p; p = e[p].fr)
    using namespace std;
    struct node{int v, fr, w;}e[N * N << 3];
    int n, m, R, C, num[N][N], tot = 0, S, T, ans = 0;
    int tail[N * N << 1], cnt = 1, dis[N * N << 1], gap[N * N << 1];
    char s[N][N];
    
    inline int read() {
    	int x = 0, f = 0; char c = getchar();
    	while (c < '0' || c > '9') f = (c == '-') ? 1 : f, c = getchar();
    	while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    	return f ? -x : x;
    }
    
    inline void add(int u, int v, int w) {
    //	printf("%d %d %d
    ", u, v, w);
    	e[++cnt] = (node){v, tail[u], w}; tail[u] = cnt;
    	e[++cnt] = (node){u, tail[v], 0}; tail[v] = cnt;
    }
    
    int dfs(int x, int hav) {
    	if (x == T) return hav;
    	int gone = 0, can = 0;
    	go(x) {
    		v = e[p].v;
    		if (! e[p].w || dis[x] != dis[v] + 1) continue;
    		can = dfs(v, min(hav - gone, e[p].w));
    		gone += can, e[p].w -= can, e[p ^ 1].w += can;
    		if (gone == hav) return gone;
    	}
    	gap[dis[x]]--;
    	if (gap[dis[x]] == 0) dis[S] = T;
    	gap[++dis[x]]++;
    	return gone;
    }
    
    int main()
    {
    	freopen("doll.in", "r", stdin);
    	freopen("doll.out", "w", stdout);
    	scanf("%d%d%d%d", &n, &m, &R, &C);
    	fo(i, 1, n) scanf("%s", s[i] + 1);
    	fo(i, 1, n) fo(j, 1, m)	
    		if (s[i][j] == '.') num[i][j] = ++tot;
    	ans = tot;
    	S = tot + 1, T = tot + 2; tot += 2;
    	fo(i, 1, n) fo(j, 1, m) {
    		if (s[i][j] != '.') continue;
    		add(S, num[i][j], 1), add(tot + num[i][j], T, 1);
    		if (i + R <= n && j + C <= m && s[i + R][j + C] == '.')
    			add(num[i][j], tot + num[i + R][j + C], 1);
    		if (i + R <= n && j - C > 0 && s[i + R][j - C] == '.')
    			add(num[i][j], tot + num[i + R][j - C], 1);
    		if (R == C) continue;
    		if (i + C <= n && j + R <= m && s[i + C][j + R] == '.')
    			add(num[i][j], tot + num[i + C][j + R], 1);
    		if (i + C <= n && j - R > 0 && s[i + C][j - R] == '.')
    			add(num[i][j], tot + num[i + C][j - R], 1);
    	}
    	
    	while (dis[S] < T)
    		ans -= dfs(S, inf);
    	printf("%d
    ", ans);
    	return 0;
    }
    
    
  • 相关阅读:
    angular-ui-bootstrap-modal必须要说的几个点(转)
    [MySQL]
    [FORWARD]ODBC 各种数据库连接串
    从零开始学习前端JAVASCRIPT — 12、JavaScript面向对象编程
    从零开始学习前端JAVASCRIPT — 11、JavaScript运动模型及轮播图效果、放大镜效果、自适应瀑布流
    从零开始学习前端JAVASCRIPT — JavaScript中this指向的四种情况
    从零开始学习前端JAVASCRIPT — 10、JavaScript基础ES6(ECMAScript6.0)
    Demo—cookie电商购物车
    从零开始学习前端JAVASCRIPT — 9、JavaScript基础RegExp(正则表达式)
    Demo—标题左右两侧的对等横线
  • 原文地址:https://www.cnblogs.com/jz929/p/13937093.html
Copyright © 2011-2022 走看看