zoukankan      html  css  js  c++  java
  • 《机电传动控制》——直流电机调速仿真作业

    通过将原有直流电机调速例子运行之后 可以看到电流的稳定性不好,到达稳定的时间较长,超调量较大,稳态误差不够小,震荡明显。

    原有的Controller只有比例控制,很粗糙,当增益较低时,稳态误差较大,当增益变大时,会引起电机电流和加速度的振荡。

    经过考虑决定用PID调节,三个调节参数为比例调节Kp,积分调节Ki,微分调节Kd

    Kp增大会减小电流值达到稳定的时间,但会增大超调量,降低系统稳定性;

    Ki消除稳态误差,但会降低系统稳定性,减慢动态响应;

    Kd能减小超调量,减小调节时间;

    最终选择参数为Kp=7.5 Ki=0.1 Kd=45

    最终得到的电机电流与电机速度变化曲线如下:

    可见超调量为Mp=7.69%   Tp=0.0195s,比较理想。

    完整代码:

    type ElectricPotential = Real;

    type ElectricCurrent = Real(quantity = "ElectricCurrent", unit = "A");

    type Resistance = Real(quantity = "Resistance", unit = "Ohm", min = 0);

    type Inductance = Real(quantity = "Inductance", unit = "H", min = 0);

    type Voltage = ElectricPotential;

    type Current = ElectricCurrent;

    type Force = Real(quantity = "Force", unit = "N");

    type Angle = Real(quantity = "Angle", unit = "rad", displayUnit = "deg");

    type Torque = Real(quantity = "Torque", unit = "N.m");

    type AngularVelocity = Real(quantity = "AngularVelocity", unit = "rad/s", displayUnit = "rev/min");

    type AngularAcceleration = Real(quantity = "AngularAcceleration", unit = "rad/s2");

    type MomentOfInertia = Real(quantity = "MomentOfInertia", unit = "kg.m2");

    type Time = Real (final quantity="Time", final unit="s");

    connector RotFlange_a "1D rotational flange (filled square)"

    Angle phi "Absolute rotational angle of flange";

    flow Torque tau "Torque in the flange";

    end RotFlange_a; //From Modelica.Mechanical.Rotational.Interfaces

    connector RotFlange_b "1D rotational flange (filled square)"

    Angle phi "Absolute rotational angle of flange";

    flow Torque tau "Torque in the flange";

    end RotFlange_b; //From Modelica.Mechanical.Rotational.Interfaces

    connector Pin "Pin of an electrical component"

    Voltage v "Potential at the pin";

    flow Current i "Current flowing into the pin";

    end Pin; //From Modelica.Electrical.Analog.Interfaces

    connector PositivePin "Positive pin of an electrical component"

    Voltage v "Potential at the pin";

    flow Current i "Current flowing into the pin";

    end PositivePin; //From Modelica.Electrical.Analog.Interfaces

    connector NegativePin "Negative pin of an electrical component"

    Voltage v "Potential at the pin";

    flow Current i "Current flowing into the pin";

    end NegativePin; //From Modelica.Electrical.Analog.Interfaces

    connector InPort "Connector with input signals of type Real"

    partial model Rigid // Rotational class Rigid

    "Base class for the rigid connection of two rotational 1D flanges"

    Angle phi "Absolute rotation angle of component";

    RotFlange_a rotFlange_a "(left) driving flange (axis directed into plane)";

    RotFlange_b rotFlange_b "(right) driven flange (axis directed out of plane)";

    equation

    rotFlange_a.phi = phi;

    rotFlange_b.phi = phi;

    end Rigid; // From Modelica.Mechanics.Rotational.Interfaces

    model Inertia "1D rotational component with inertia"

    extends Rigid;

    parameter MomentOfInertia J = 1 "Moment of inertia";

    AngularVelocity w "Absolute angular velocity of component";

    AngularAcceleration a "Absolute angular acceleration of component";

    equation

    w = der(phi);

    a = der(w);

    J*a = rotFlange_a.tau + rotFlange_b.tau;

    end Inertia; //From Modelica.Mechanics.Rotational

    partial model TwoPin // Same as OnePort in Modelica.Electrical.Analog.Interfaces

    "Component with two electrical pins p and n and current i from p to n"

    Voltage v "Voltage drop between the two pins (= p.v - n.v)";

    Current i "Current flowing from pin p to pin n";

    PositivePin p;

    NegativePin n;

    equation

    v = p.v - n.v;

    0 = p.i + n.i;

    i = p.i;

    end TwoPin;

    model DCMotor "DC Motor"

    extends TwoPin;

    extends Rigid;

    OutPort SensorVelocity(n=1);

    OutPort SensorCurrent(n=1);

    parameter MomentOfInertia J"Total Inertia";

    parameter Resistance R"Armature Resistance";

    parameter Inductance L"Armature Inductance";

    parameter Real Kt"Torque Constant";

    parameter Real Ke"EMF Constant";

    AngularVelocity w "Angular velocity of motor";

    AngularAcceleration a "Absolute angular acceleration of motor";

    Torque tau_motor;

    RotFlange_b rotFlange_b; // Rotational Flange_b

    equation

    w = der(rotFlange_b.phi);

    a = der(w);

    v = R*i+Ke*w+L*der(i);

    tau_motor = Kt*i;

    J*a = tau_motor + rotFlange_b.tau;

    SensorVelocity.signal[1] = w;

    SensorCurrent.signal[1] = i;

    end DCMotor;

    class Resistor "Ideal linear electrical Resistor"

    extends TwoPin; // Same as OnePort

    parameter Real R(unit = "Ohm") "Resistance";

    equation

    R*i = v;

    end Resistor; // From Modelica.Electrical.Analog.Basic

    class Inductor "Ideal linear electrical Inductor"

    extends TwoPin; // Same as OnePort

    parameter Real L(unit = "H") "Inductance";

    equation

    v = L*der(i);

    end Inductor; // From Modelica.Electrical.Analog.Basic

    class Ground "Ground node"

    Pin p;

    equation

    p.v = 0;

    end Ground; // From Modelica.Electrical.Analog.Basic

    model PWMVoltageSource

    extends TwoPin;

    InPort Command(n=1);

    parameter Time T = 0.003;

    parameter Voltage Vin = 200;

    equation

    T*der(v)+ v = Vin*Command.signal[1]/10;

    end PWMVoltageSource;

    block Controller

    InPort command(n=1);

    InPort feedback(n=1);

    OutPort outPort(n=1);

    Real error;

    Real error_i;

    Real error_d;

    Real pout;

    parameter Real Kp=7.5;

    parameter Real Ki=0.1;

    parameter Real Kd=45;

    parameter Real Max_Output_Pos = 10;

    parameter Real Max_Output_Neg = -10;

    algorithm

    error := command.signal[1] - feedback.signal[1];

    error_i:=error_i+error;

    error_d:=error-pre(error);

    pout := Kp * error+Ki*error_i+Kd*error_d;

    if pout > Max_Output_Pos then

    outPort.signal[1] := Max_Output_Pos;

    elseif pout < Max_Output_Neg then

    outPort.signal[1] := Max_Output_Neg;

    else

    outPort.signal[1] := pout;

    end if;

    end Controller;

    block CommandSignalGenerator

    OutPort outPort(n=1);

    Real acc;

    equation

    if time <= 1 then

    acc =60;

    elseif time <3 then

    acc = 0;

    elseif time <4 then

    acc = -60;

    else

    acc = 0;

    end if;

    der(outPort.signal[1]) = acc;

    end CommandSignalGenerator;

    parameter Integer n = 1 "Dimension of signal vector";

    input Real signal[n] "Real input signals";

    end InPort; // From Modelica.Blocks.Interfaces

    connector OutPort "Connector with output signals of type Real"

    parameter Integer n = 1 "Dimension of signal vector";

    output Real signal[n] "Real output signals";

    end OutPort; // From Modelica.Blocks.Interfaces

    model DCMotorControlSystem

    Ground ground1;

    Inertia inertia1(J = 3, w(fixed = true));

    DCMotor motor1(J = 1,R = 0.6,L = 0.01,Kt=1.8, Ke= 1.8,rotFlange_b(phi(fixed = true)));

    CommandSignalGenerator sg1;

    Controller con1;

    PWMVoltageSource PowerSource1;

    equation

    connect(sg1.outPort, con1.command);

    connect(con1.feedback, motor1.SensorVelocity);

    connect(con1.outPort, PowerSource1.Command);

    connect(PowerSource1.p, motor1.p);

    connect(motor1.rotFlange_b, inertia1.rotFlange_a);

    connect(PowerSource1.n, ground1.p);

    connect(ground1.p, motor1.n);

    end DCMotorControlSystem;

    simulate( DCMotorControlSystem, stopTime=5 )

    plot({motor1.i,motor1.w})

  • 相关阅读:
    函数二 10
    函数初识 09
    文件操作 08
    数据类型的补充 day07
    小数据池 深浅copy 集合
    python Mysql 多条件查询
    ElasticSearch Python 基本操作
    用PyInstaller把Python代码打包成单个独立的exe可执行文件
    python 编译EXE文件
    Git 创建新分支检查分支
  • 原文地址:https://www.cnblogs.com/jzhyb/p/5597262.html
Copyright © 2011-2022 走看看