import java.io.IOException; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.Date; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.*; import org.apache.hadoop.mapreduce.*; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** * map就是把key先分出来。系统会自己主动把同样key的value放到一个iterator里面,reduce就是去处理key和已经归并好的iterator */ public class Template extends Configured implements Tool { /** * 计数器 * 用于计数各种异常数据 */ enum Counter { LINESKIP, //出错的行 } /** * MAP任务 */ public static class Map extends Mapper<LongWritable, Text, Text, Text> //输入的key(详细是什么由job.setInputFormatClass决定),输入的value,输出的key,输出的value { public void map ( LongWritable key, Text value, Context context ) throws IOException, InterruptedException { String line = value.toString(); //读取源数据 try { //数据处理 String [] lineSplit = line.split(" "); String anum = lineSplit[0]; String bnum = lineSplit[1]; context.write( new Text(bnum), new Text(anum) ); //输出 } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { context.getCounter(Counter.LINESKIP).increment(1); //出错令计数器+1 return; } } } /** * REDUCE任务 */ public static class Reduce extends Reducer<Text, Text, Text, Text> { public void reduce ( Text key, Iterable<Text> values, Context context ) throws IOException, InterruptedException { String valueString; String out = ""; for ( Text value : values ) { valueString = value.toString(); out += valueString + "|"; } context.write( key, new Text(out) ); } } @Override public int run(String[] args) throws Exception { Configuration conf = getConf(); Job job = new Job(conf, "Test_2"); //任务名 job.setJarByClass(Test_2.class); //指定Class FileInputFormat.addInputPath( job, new Path(args[0]) ); //输入路径 FileOutputFormat.setOutputPath( job, new Path(args[1]) ); //输出路径 job.setMapperClass( Map.class ); //调用上面Map类作为Map任务代码 job.setReducerClass ( Reduce.class ); //调用上面Reduce类作为Reduce任务代码,没有这行就调用默认的reduce job.setOutputFormatClass( TextOutputFormat.class ); job.setOutputKeyClass( Text.class ); //指定输出的KEY的格式 job.setOutputValueClass( Text.class ); //指定输出的VALUE的格式 job.waitForCompletion(true); //输出任务完毕情况 System.out.println( "任务名称:" + job.getJobName() ); System.out.println( "任务成功:" + ( job.isSuccessful()?"是":"否" ) ); System.out.println( "输入行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS").getValue() ); System.out.println( "输出行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_OUTPUT_RECORDS").getValue() ); System.out.println( "跳过的行:" + job.getCounters().findCounter(Counter.LINESKIP).getValue() ); return job.isSuccessful() ? 0 : 1; } /** * 设置系统说明 * 设置MapReduce任务 */ public static void main(String[] args) throws Exception { //推断參数个数是否正确 //假设无參数执行则显示以作程序说明 if ( args.length != 2 ) { System.err.println(""); System.err.println("Usage: Test_2 < input path > < output path > "); System.err.println("Example: hadoop jar ~/Test_2.jar hdfs://localhost:9000/home/james/Test_2 hdfs://localhost:9000/home/james/output"); System.err.println("Counter:"); System.err.println(" "+"LINESKIP"+" "+"Lines which are too short"); System.exit(-1); } //记录開始时间 DateFormat formatter = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" ); Date start = new Date(); //执行任务 int res = ToolRunner.run(new Configuration(), new Test_2(), args); //输出任务耗时 Date end = new Date(); float time = (float) (( end.getTime() - start.getTime() ) / 60000.0) ; System.out.println( "任务開始:" + formatter.format(start) ); System.out.println( "任务结束:" + formatter.format(end) ); System.out.println( "任务耗时:" + String.valueOf( time ) + " 分钟" ); System.exit(res); } }