zoukankan      html  css  js  c++  java
  • 递归解决汉诺塔问题

    汉诺塔问题:有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方,求至少需要多少次移动。

     

    我们首先假设n=1,那么move(n)=1,因为这时候只需要从A->C便可以。接下来假设n=2,那么move(n)=3 即A->B,A->C,B->C; 假设n=3,move(n)=7 即A->C,A->b,C->B,A->C,B->A,B->C,A->C ,我们可以把move(n)看作是把n个盘子移动到某个柱子上,于是move(n)=move(n-1)+1+move(n-1),代表的意思便是将n-1个盘子搬到B,再将最底下最大的盘子搬到C,然后再将n-1个盘子搬回到C,达到目的。递归的终止条件当然就是move(1)=1{这是为了保证n=1的时候可以终止}以及move(2)=3

    #include <iostream>
    
    using namespace std;
    
    int sum = 0;
    
    void Hanoi(char from,char by,char to,int n)
    {
        // 根据题目是否需要打印路径 cout << from << " move to " << to << " by " << by << endl;
        if(n==1)
        {
            sum++;
            return;
        }
        else if(n==2)
        {
            sum+=3;
            return;
        }
        Hanoi(from,to,by,n-1);
        sum++;
        Hanoi(by,from,to,n-1);
    }
    
    int main()
    {
        Hanoi('A','B','C',3);
        return 0;
    }

    如果不需要打印路径只要求次数的话,次数的递推式便是move(n)=(n==1?1:(move(n-1)*2+1)) (也就是循环2*i+1)

  • 相关阅读:
    英飞凌TLE9461V33 SBC芯片
    Lin总线诊断级别定义 CLASS I 、II 、III
    AUTOSAR_SWS_CANInterface 阅读
    AUTOSAR_SWS_CANTransceiverDriver 阅读
    VS2013 快捷键
    Can总线空闲状态时候,TX,RX电平
    postman
    题目2
    Robot Framework 自动化测试
    银行测试 http://blog.csdn.net/stillming/article/details/42275251
  • 原文地址:https://www.cnblogs.com/kachunyippp/p/10256787.html
Copyright © 2011-2022 走看看