zoukankan      html  css  js  c++  java
  • srm 565 div2

    1、水题,简单的画图,略过。

    2、用到了贪心算法,需要把当前n个金币可以买到的最强能力保存下来,然后在可以达到终点的路径中取最小的即可。

     1 #include <iostream>
     2 #include <string>
     3 #include <vector>
     4 #include <cstdlib>
     5 #include <cmath>
     6 #include <map>
     7 #include <stack>
     8 #include <algorithm>
     9 #include <list>
    10 #include <ctime>
    11 #include <set>
    12 #include <queue>
    13 using namespace std;
    14 
    15 typedef long long ll;
    16 ll pricepower[30][50];
    17 class MonstersValley2 {
    18 public:
    19     int minimumPrice(vector<int> dread, vector<int> price) {
    20         int dsz = dread.size();
    21         pricepower[0][price[0]] = dread[0];
    22         for (int i = 1; i < dsz; i++) {
    23             for (int j = 45; j >= -1; j--) {
    24                 if (pricepower[i - 1][j] >= dread[i]) {
    25                     pricepower[i][j] = pricepower[i - 1][j];
    26                 }
    27             }
    28 
    29             for (int j = 45; j >= -1; j--) {
    30                 if (pricepower[i-1][j]!=0) {
    31                     pricepower[i][j+price[i]] = max(pricepower[i][j+price[i]],pricepower[i - 1][j]+dread[i]);
    32                 }
    33             }
    34         }
    35         int res=0;
    36         for (int i = 0; i < 45; i++) {
    37             if(pricepower[dsz-1][i]!=0){
    38                 res=i;
    39                 break;
    40             }
    41         }
    42         return res;
    43     }
    44 
    45 };

    3、刚开始想到的办法是因子a到N的路径,时间复杂度太高了,N的因子个数是n,时间复杂度是O(H*n^2),后来发现矩阵相乘的时候可以优化,但是n的复杂度又上去了,达到O(log(H)*n^3)(下边),超过了两秒,还是不行。

      1 #include <iostream>
      2 #include <string>
      3 #include <vector>
      4 #include <cstdlib>
      5 #include <map>
      6 #include <algorithm>
      7 #include <stack>
      8 #include <queue>
      9 #include <cmath>
     10 using namespace std;
     11 const int mool = 1000000009;
     12 typedef long long ll;
     13 typedef vector<vector<int> > vvint;
     14 typedef map<int, int>::iterator it_int_int;
     15 typedef map<int, int> mii;
     16 map<int, int> allmap;
     17 class DivisibleSequence {
     18 public:
     19     int count(int N, int H) {
     20         if (H == 1)
     21             return 1;
     22         int half = sqrt(N) + 10;
     23         cout << half << endl;
     24         int cur = N;
     25         vector<int> div;
     26         div.push_back(1);
     27         div.push_back(N);
     28         for (int i = 2; i < half; i++) {
     29             if ((cur % i) == 0) {
     30                 while (1) {
     31                     div.push_back(i);
     32                     cur = cur / i;
     33                     if ((cur % i) != 0)
     34                         break;
     35                 }
     36             }
     37         }
     38         if (cur != 1 && cur != N)
     39             div.push_back(cur);
     40         map<int, int> num_c;
     41         for (int i = 0; i < div.size(); i++)
     42             num_c[div[i]]++;
     43         map<int, int> num_next;
     44         num_next = num_c;
     45         for (it_int_int j = num_next.begin(); num_next.end() != j; j++) {
     46             j->second = 1;
     47         }
     48         while (1) {
     49             bool judge = true;
     50             for (it_int_int i = num_c.begin(); num_c.end() != i; i++) {
     51                 for (it_int_int j = num_next.begin(); num_next.end() != j;
     52                         j++) {
     53                     ll cnum = j->first;
     54                     ll mul = (i->first) * cnum;
     55                     if ((N % mul) == 0) {
     56                         it_int_int ittmp = num_next.find(mul);
     57                         if (num_next.end() == ittmp) {
     58                             judge = false;
     59                             num_next[mul] = 1;
     60                         }
     61                     }
     62                 }
     63             }
     64             if (judge)
     65                 break;
     66         }
     67 
     68         int tmpkaka = 0;
     69         for (it_int_int j = num_next.begin(); num_next.end() != j; j++) {
     70             allmap[tmpkaka] = j->first;
     71             cout << allmap[tmpkaka] << endl;
     72             tmpkaka++;
     73         }
     74         int nsz = num_next.size();
     75         cout << nsz << endl;
     76         vector<vector<int> > allzero(nsz, vector<int>(nsz, 0));
     77 
     78         vvint pow = allzero;
     79         int i1 = 0;
     80         for (it_int_int i = num_next.begin(); num_next.end() != i; i++) {
     81             int cur_nm1 = i->first;
     82             int j1 = 0;
     83             for (it_int_int j = num_next.begin(); num_next.end() != j; j++) {
     84                 int cur_nm = j->first;
     85                 if ((cur_nm % cur_nm1) == 0) {
     86                     ll tmp = (pow[i1][j1] + i->second) % mool;
     87                     pow[i1][j1] = tmp;
     88                 }
     89                 j1++;
     90             }
     91             i1++;
     92         }
     93 
     94         vvint a, c, res;
     95         a = pow;
     96         res = allzero;
     97         for (int i = 0; i < nsz; i++) {
     98             res[i][i] = 1;
     99         }
    100         int counter = H - 1;
    101         int kaka = 0;
    102         while (counter) {
    103             cout << kaka << endl;
    104             int remain = counter % 2;
    105             cout << "here2\n";
    106             if (remain == 1) {
    107                 multi(pow, res, res);
    108             }
    109             cout << "here\n";
    110             counter /= 2;
    111             multi(a, a, pow);
    112 
    113             cout << "here1\n";
    114             a = pow;
    115             kaka++;
    116         }
    117         int finalres = 0;
    118         for (int i = 0; i < nsz; i++) {
    119             finalres = (finalres + res[i][nsz - 1]) % mool;
    120         }
    121         return finalres;
    122     }
    123     void multi(vvint& a, vvint b, vvint &c) {
    124         int asz = a.size();
    125         for (int i = 0; i < asz; i++) {
    126             for (int j = i; j < asz; j++) {
    127                 if ((allmap[j] % allmap[i]) == 0) {
    128                     c[i][j] = 0;
    129                     for (int k = i; k < j + 1; k++) {
    130                         if (a[i][k] != 0 && b[k][j] != 0) {
    131                             ll tmp1 = a[i][k];
    132                             ll tmp2 = b[k][j];
    133                             ll tmp3 = c[i][j];
    134                             ll curval = (tmp3 + tmp1 * tmp2) % mool;
    135                             c[i][j] = curval;
    136                         }
    137                     }
    138                 }
    139             }
    140         }
    141     }
    142 };

     今天看了看wiki,终于知道怎么办了,还是数学功底要深厚啊,费马小定理啊~~~泪奔,实在想不到

     1 #include <iostream>
     2 #include <string>
     3 #include <vector>
     4 #include <cstdlib>
     5 #include <map>
     6 #include <algorithm>
     7 #include <stack>
     8 #include <queue>
     9 #include <cmath>
    10 using namespace std;
    11 
    12 typedef long long ll;
    13 const ll mod = 1000000009;
    14 
    15 class DivisibleSequence {
    16 public:
    17     ll modPow(ll x, ll y) { //计算x的y次方
    18         ll r = 1, a = x;
    19         while (y > 0) {
    20             if ((y & 1) == 1) {
    21                 r = (r * a) % mod;
    22             }
    23             a = (a * a) % mod;
    24             y /= 2;
    25         }
    26         return r;
    27     }
    28     ll modInverse(ll x) {
    29         //计算x',使得 x * x' =1 (模 mod),mod是质数,可知  x * (x^(mod-2)) =1 (模 mod)
    30         //可得x'=(x^(mod-2)) (模 mod)
    31         return modPow(x, mod - 2);
    32     }
    33 
    34     ll modDivision(ll p, ll q) {
    35         //若想计算  x/y (模mod),等价于计算  x*y' (模mod)
    36         return (p * modInverse(q)) % mod;
    37     }
    38 
    39     ll C(ll n, int k) { //计算C(n,k)
    40         if (k > n) {
    41             return 0;
    42         }
    43         ll p = 1, q = 1;
    44         for (int i = 1; i <= k; i++) {
    45             q = (q * i) % mod;
    46             p = (p * (n - i + 1)) % mod;
    47         }
    48         return modDivision(p, q);
    49     }
    50     int count(int N, int H) {
    51         ll res = 1;
    52         //获取质因子p以及它的幂c
    53         for (int p = 2; p <= N / p; p++) {
    54             int c = 0;
    55             while (N % p == 0) {
    56                 N /= p;
    57                 c++;
    58             }
    59             res = (res * C(H - 1 + c, c)) % mod;
    60         }
    61 
    62         if (N > 1) {//如果还剩下一个质数因子
    63             res = (res * C(H, 1)) % mod;
    64         }
    65         return (int) res;
    66     }
    67 };

     div1-2

    nim游戏的变种,同构映射加速部分蛮有意思。

     1 #include <iostream>
     2 #include <string>
     3 #include <vector>
     4 #include <cstdlib>
     5 #include <map>
     6 #include <algorithm>
     7 #include <stack>
     8 #include <queue>
     9 #include <cmath>
    10 using namespace std;
    11 
    12 typedef long long ll;
    13 typedef vector<int> vi;
    14 typedef vector<long long> vll;
    15 const ll mod = 1000000009;
    16 class TheDivisionGame {
    17 public:
    18     ll countWinningIntervals(int L, int R) {
    19         int n = R - L + 1;
    20         // Find the list of n counts of prime factors:
    21         vi nimber(n);
    22         vi current(n);
    23         for (int i = L; i <= R; i++) {
    24             current[i - L] = i;
    25         }
    26         // A modified Sieve of Erathostenes:
    27         for (int p = 2; p <= R / p; p++) {
    28             int s = L;
    29             if (L % p != 0) {
    30                 s += p - (L % p);
    31             }
    32             while (s <= R) {
    33                 while (current[s - L] % p == 0) {
    34                     current[s - L] /= p;
    35                     nimber[s - L]++;
    36                 }
    37                 s += p;
    38             }
    39         }
    40         for (int i = L; i <= R; i++) {
    41             if (current[i - L] != 1) {
    42                 nimber[i - L]++;
    43             }
    44         }
    45         for (int i = L; i <= R; i++) {
    46             cout << nimber[i - L] << " ";
    47         }
    48         cout << endl;
    49 
    50         // Counting the number of consecutive subsequences with a xor different
    51         // to 0.
    52         ll s = 0; //We will first count the ones with a xor equal to 0:
    53 
    54         // The following two codes are equivalent. Can you tell why?
    55         // #1:
    56         vll next(32);
    57         for (int i = n - 1; i >= 0; i--) {
    58             vll curr(32);
    59             for (int x = 0; x < 32; x++) {
    60                 curr[nimber[i] ^ x] = next[x]; //等价于curr[x] = next[nimber[i] ^x];
    61             } //1
    62             curr[nimber[i]]++; //2
    63             s += curr[0];
    64             next = curr;
    65         }
    66 
    67         //方法1.5
    68 //        vll origin(32);
    69 //        ll fmap = nimber[n - 1];
    70 //        for (int i = n - 1; i >= 0; i--) {
    71 //            origin[0 ^ fmap]++;
    72 //            fmap ^= nimber[i];
    73 //            s += origin[fmap];
    74 //        }
    75 
    76         //方法2
    77         /*        ll dp(32, 0);
    78          int x = 0;
    79          for (int i = n - 1; i >= 0; i--) {
    80          dp[x]++;
    81          x ^= nimber[i];
    82          s += dp[x];
    83          }*/
    84 
    85         return (n + 1) * (ll) n / 2 - s;
    86     }
    87 };
  • 相关阅读:
    泛型简介
    单元测试(junit使用)
    枚举简介
    面试题:二叉树的镜像
    面试题:和为S的连续正数列
    面试题:丑数
    面试题:合并两个排序的链表
    面试题:数值的整数次方
    面试题:矩形覆盖
    面试题:数组中的逆序对
  • 原文地址:https://www.cnblogs.com/kakamilan/p/2827343.html
Copyright © 2011-2022 走看看