场景:有三个线程t1、t2、t3。确保三个线程t1执行完后t2执行,t2执行完成后t3执行。
1、thread.Join把指定的线程加入到当前线程,可以将两个交替执行的线程合并为顺序执行的线程。比如在线程B中调用了线程A的Join()方法,直到线程A执行完毕后,才会继续执行线程B
public class ThreadTest1 { // T1、T2、T3三个线程顺序执行 public static void main(String[] args) { Thread t1 = new Thread(new Work(null)); Thread t2 = new Thread(new Work(t1)); Thread t3 = new Thread(new Work(t2)); t1.start(); t2.start(); t3.start(); } static class Work implements Runnable { private Thread beforeThread; public Work(Thread beforeThread) { this.beforeThread = beforeThread; } public void run() { if (beforeThread != null) { try { beforeThread.join(); System.out.println("thread start:" + Thread.currentThread().getName()); } catch (InterruptedException e) { e.printStackTrace(); } } else { System.out.println("thread start:" + Thread.currentThread().getName()); } } } }
2、使用CountDownLatch
CountDownLatch(闭锁)是一个很有用的工具类,利用它我们可以拦截一个或多个线程使其在某个条件成熟后再执行。它的内部提供了一个计数器,在构造闭锁时必须指定计数器的初始值,且计数器的初始值必须大于0。另外它还提供了一个countDown方法来操作计数器的值,每调用一次countDown方法计数器都会减1,直到计数器的值减为0时就代表条件已成熟,所有因调用await方法而阻塞的线程都会被唤醒。这就是CountDownLatch的内部机制,看起来很简单,无非就是阻塞一部分线程让其在达到某个条件之后再执行。
public class ThreadTest2 { // T1、T2、T3三个线程顺序执行 public static void main(String[] args) { CountDownLatch c0 = new CountDownLatch(0); //计数器为0 CountDownLatch c1 = new CountDownLatch(1); //计数器为1 CountDownLatch c2 = new CountDownLatch(1); //计数器为1 Thread t1 = new Thread(new Work(c0, c1)); //c0为0,t1可以执行。t1的计数器减1 Thread t2 = new Thread(new Work(c1, c2)); //t1的计数器为0时,t2才能执行。t2的计数器c2减1 Thread t3 = new Thread(new Work(c2, c2)); //t2的计数器c2为0时,t3才能执行 t1.start(); t2.start(); t3.start(); } //定义Work线程类,需要传入开始和结束的CountDownLatch参数 static class Work implements Runnable { CountDownLatch c1; CountDownLatch c2; Work(CountDownLatch c1, CountDownLatch c2) { super(); this.c1 = c1; this.c2 = c2; } public void run() { try { c1.await();//前一线程为0才可以执行 System.out.println("thread start:" + Thread.currentThread().getName()); c2.countDown();//本线程计数器减少 } catch (InterruptedException e) { } } } }