zoukankan      html  css  js  c++  java
  • Python数据可视化Matplotlib——Figure画布背景设置

    之前在今日头条中更新了几期的Matplotlib教学短视频,在圈内受到了广泛好评,现应大家要求,将视频中的代码贴出来,方便大家学习。

    为了使实例图像显得不单调,我们先将绘图代码贴上来,此处代码对Figure背景设置无影响。

    默认背景下图像及代码

    
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    import matplotlib.image as img
    from matplotlib.font_manager import FontProperties
    
    # 显示数学公式
    def add_math_background(fig):
        ax = fig.add_axes([0.3, 0.25, 0.5, 0.5])
        text = []
        text.append(
            (r"$W^{3eta}_{delta_1 
    ho_1 sigma_2} = "
             r"U^{3eta}_{delta_1 
    ho_1} + frac{1}{8 pi 2}"
             r"int^{alpha_2}_{alpha_2} d alpha^prime_2 "
             r"left[frac{ U^{2eta}_{delta_1 
    ho_1} - "
             r"alpha^prime_2U^{1eta}_{
    ho_1 sigma_2} "
             r"}{U^{0eta}_{
    ho_1 sigma_2}}
    ight]$", (0.6, 0.3), 20))
        text.append((r"$frac{d
    ho}{d t} + 
    ho vec{v}cdot
    ablavec{v} "
                     r"= -
    abla p + mu
    abla^2 vec{v} + 
    ho vec{g}$",
                     (0.45, 0.7), 20))
        text.append((r"$int_{-infty}^infty e^{-x^2}dx=sqrt{pi}$",
                     (0.25, 0.4), 25))
        text.append((r"$F_G = Gfrac{m_1m_2}{r^2}$",
                     (0.75, 0.6), 30))
        for eq, (x, y), size in text:
            ax.text(x, y, eq, ha='center', va='center', color="#11557c",
                    alpha=0.25, transform=ax.transAxes, fontsize=size)
        ax.set_axis_off()
        return ax
    
    # 显示Matplotlib小讲堂
    def add_matplotlib_text(ax,color):
        font=FontProperties(fname=r"/Library/Fonts/Songti.ttc", size=85)
        ax.text(0.55, 0.6, 'matplotlib', color=color,size=35,
                ha='right', va='bottom', alpha=1.0, transform=ax.transAxes)
        ax.text(0.55, 0.45, u'小讲堂', color=color,fontproperties=font,
                ha='center', va='center', alpha=1.0, transform=ax.transAxes)
    
    # 极坐标图像
    def add_polar_bar(fig):
        ax = fig.add_axes([0.25, 0.4, 0.2, 0.2], projection='polar')
    
        ax.axesPatch.set_alpha(0.05)
        ax.set_axisbelow(True)
        N = 7
        arc = 2. * np.pi
        theta = np.arange(0.0, arc, arc/N)
        radii = 10 * np.array([0.2, 0.6, 0.8, 0.7, 0.4, 0.5, 0.8])
        width = np.pi / 4 * np.array([0.4, 0.4, 0.6, 0.8, 0.2, 0.5, 0.3])
        bars = ax.bar(theta, radii, width=width, bottom=0.0)
        for r, bar in zip(radii, bars):
            bar.set_facecolor(cm.jet(r/10.))
            bar.set_alpha(0.6)
    
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            label.set_visible(False)
    
        for line in ax.get_ygridlines() + ax.get_xgridlines():
            line.set_lw(0.8)
            line.set_alpha(0.9)
            line.set_ls('-')
            line.set_color('0.5')
    
        ax.set_yticks(np.arange(1, 9, 2))
        ax.set_rmax(9)
    
    def pltfig(fig,color='#11557c'):
        main_axes = add_math_background(fig)
        add_polar_bar(fig)
        add_matplotlib_text(main_axes,color)
        
    if __name__ == '__main__':
        fig = plt.figure(figsize=(16, 8))
        pltfig(fig)
        plt.show()
    
    

    单一色彩背景

    Figure设置单一色彩背景通常有两种方法:

    1. 创建Figure对象时给定facecolor关键字参数值
      fig = plt.figure(facecolor='snow')
    2. 使用Figure对象的set_facecolor方法
    fig = plt.figure()
    fig.set_facecolor('blueviolet')
    

    方法一代码及图像

    if __name__ == '__main__':
        fig = plt.figure(figsize=(16, 8),facecolor='snow')
        pltfig(fig)
        plt.show()
    
    

    方法二代码及图像

    if __name__ == '__main__':
        fig = plt.figure(figsize=(16, 8))
        fig.set_facecolor('blueviolet')
        pltfig(fig)
        plt.show()
    
    

    复合色彩背景

    Figure设置复合色彩背景步骤:

    1. 创建色彩数组
      a = [np.linspace(0,1,1600)]*1600
    2. 通过Figure对象的figimage方法中的cmap关键字设定要设定的背景色彩
      fig.figimage(a, cmap= plt.get_cmap('autumn'))

    代码及图像:

    if __name__ == '__main__':
        fig = plt.figure(figsize=(16, 8))
        a = [np.linspace(0,1,1600)]*1600
        fig.figimage(a, cmap= plt.get_cmap('autumn'))
        pltfig(fig)
        plt.show()
    
    

    图像背景

    Figure设置图像背景步骤:

    1. 将图像文件转换成数组
      bgimg = img.imread('./world.png')
    2. 通过Figure对象的figimage方法将图像设置为背景
      fig.figimage(bgimg)

    代码及图像:

    if __name__ == '__main__':
        fig = plt.figure(figsize=(16, 8))
        bgimg = img.imread('./world.png')
        fig.figimage(bgimg)
        pltfig(fig)
        plt.show()
    
    


    视频地址

    想观看Matplotlib教学视频,了解更多Matplotlib实用技巧可关注

    微信公众账号: MatplotlibClass

    今日头条号:Matplotlib小讲堂

  • 相关阅读:
    Ensure that you have installed a JDK (not just a JRE) and configured your JAVA_HOME system variable
    调试bug 技巧
    调试bug 技巧
    调试bug 技巧
    调试技巧之 找准调试点
    调试技巧之 找准调试点
    调试技巧之 找准调试点
    adnroid 打包问题 :compileReleaseJavaWithJavac
    线程等待
    LinkedList源码解析(jdk1.8)
  • 原文地址:https://www.cnblogs.com/kallan/p/7337035.html
Copyright © 2011-2022 走看看