01分数规划,即给定模型求sum(ai)/sum(bi)的最值;
我们可以改变一下式子的形态:
sum(ai)/sum(bi)>=L
=sum(ai)-L*sum(bi)>=0
所以我们可以通过二分判断L的取值;
标准的二分代码:
#include<cstdio> #include<algorithm> #include<ctype.h> #include<string.h> #include<math.h> using namespace std; #define ll long long inline char read() { static const int IN_LEN = 1000000; static char buf[IN_LEN], *s, *t; return (s==t?t=(s=buf)+fread(buf,1,IN_LEN,stdin),(s==t?-1:*s++):*s++); } template<class T> inline void read(T &x) { static bool iosig; static char c; for (iosig=false, c=read(); !isdigit(c); c=read()) { if (c == '-') iosig=true; if (c == -1) return; } for (x=0; isdigit(c); c=read()) x=((x+(x<<2))<<1)+(c^'0'); if (iosig) x=-x; } const int N = 100005; int n, k, a[N], b[N], g[N]; double f[N]; inline bool cmp(int x, int y){ return f[x]>f[y];} inline double check(double x){ for(int i=1; i<=n; ++i) f[i]=a[i]-b[i]*x, g[i]=i; nth_element(g+1, g+k+1, g+n+1, cmp); ll sa=0, sb=0; for(int i=1; i<=k; ++i) sa+=a[g[i]], sb+=b[g[i]]; return (double)sa/sb; } int main() { read(n), read(k); for(int i=1; i<=n; ++i) read(a[i]); for(int i=1; i<=n; ++i) read(b[i]); double l=0, r=1e6, ans=0; while(r-l>1e-7){ double mid=(l+r)/2; if(check(mid)>=mid) ans=mid, l=mid; else r=mid; } return printf("%.4f", ans), 0; }