zoukankan      html  css  js  c++  java
  • HDU-3338 Kakuro Extension(最大流,方格横纵和问题)

    题目链接:HDU-3338 Kakuro Extension

    题意

    给出一个$n imes m$的网格,每个格子为黑色或白色,对于一行中连续的若干个白色格子,我们要往这若干个白色格子中填入$1sim 9$的数字,使其和等于左边黑色格子中的一个已知数字$a_1$;对于一列中连续的若干个白色格子,同理填入$1sim 9$的数字使其和等于上边黑色格子中的一个已知数字$a_2$。如果一个黑色格子相邻的右边和下边都有白色格子,那么这个黑色格子是带有两个已知数字$a_1$和$a_2$的,分别代表右边和下边白色格子的和。要求给出所有白色格子的填数方案。


    思路

    抽象出源点$s$和汇点$t$,下面用(始点,终点,容量)来表示流网络中的一条边,建图:

    对于带有$a_1$的黑色格子$u$,连边$(s, u, a_1-cnt_1)$($cnt_1$表示$u$右边相邻连续的白色格子数量);

    对于带有$a_2$的黑色格子$u'$,连边$(u',t,a_2-cnt_2)$($cnt_2$表示$u$下边相邻连续的白色格子数量);

    对于带有$a_1$和$a_2$的黑色格子,则需要拆成两个点$u$和$u'$,连边$(s, u, a_1-cnt_1)$,$(u',t,a_2-cnt_2)$;

    对于白色格子$v$的连边,由于填入的数字有$1sim 9$的限制,是有上下界限制的网络流,我们用边$(v,u')$的流量来表示填入的数字,因为最大流中有的边流量可能为$0$,所以我们将$1sim 9$的限制改为$0sim 8$,最后输出的时候再加$1$即可(这也是为什么上面的连边都要减掉$cnt_1$或$cnt_2$,因为每个格子数字减了$1$,总和就要减掉格子数量),这样我们应该连的边为$(u, v, 8), (v, u', 8)$。

    Ford-Fulkerson方法跑最大流后,边$(v,u')$的初始容量$8$减去残余容量就是这条边的流量,再$+1$就是$v$对应的白色格子应填入的数字。

    实际实现中,用合理的编号表示上面所提到的$u,u',v$等结点,不要不同结点用相同编号即可。


    代码实现

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    using std::queue;
    const int INF = 0x3f3f3f3f, N = 22000, M = 55000;
    int head[N], d[N];
    int s, t, tot, maxflow;
    struct Edge
    {
        int to, cap, nex;
    } edge[M];
    struct Grid
    {
        int x, y;
        bool color;
    } grid[110][110];
    
    queue<int> q;
    void add(int x, int y, int z) {
        edge[++tot].to = y, edge[tot].cap = z, edge[tot].nex = head[x], head[x] = tot;
        edge[++tot].to = x, edge[tot].cap = 0, edge[tot].nex = head[y], head[y] = tot;
    }
    bool bfs() {
        memset(d, 0, sizeof(d));
        while (q.size()) q.pop();
        q.push(s); d[s] = 1;
        while (q.size()) {
            int x = q.front(); q.pop();
            for (int i = head[x]; i; i = edge[i].nex) {
                int v = edge[i].to;
                if (edge[i].cap && !d[v]) {
                    q.push(v);
                    d[v] = d[x] + 1;
                    if (v == t) return true;
                }
            }
        }
        return false;
    }
    int dinic(int x, int flow) {
        if (x == t) return flow;
        int rest = flow, k;
        for (int i = head[x]; i && rest; i = edge[i].nex) {
            int v = edge[i].to;
            if (edge[i].cap && d[v] == d[x] + 1) {
                k = dinic(v, std::min(rest, edge[i].cap));
                if (!k) d[v] = 0;
                edge[i].cap -= k;
                edge[i^1].cap += k;
                rest -= k;
            }
        }
        return flow - rest;
    }
    void init(int n) {
        tot = 1, maxflow = 0;
        s = n + 1, t = s + 1;
        memset(head, 0, sizeof(head));
    }
    void read_build(int n, int m) {
        char str[10];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                scanf(" %s", str);
                if (str[0] == '.') {
                    grid[i][j].color = grid[i][j].x = grid[i][j].y = 0;
                    continue;
                }
                grid[i][j].color = 1;
                if (str[0] != 'X') grid[i][j].y = (str[0] - '0') * 100 + (str[1] - '0') * 10 + (str[2] - '0');
                else grid[i][j].y = 0;
                if (str[4] != 'X') grid[i][j].x = (str[4] - '0') * 100 + (str[5] - '0') * 10 + (str[6] - '0');
                else grid[i][j].x = 0;
            }
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                int cnt = 0;
                if (grid[i][j].color && grid[i][j].y) {
                    for (int k = i + 1; k < n; k++) {
                        if (grid[k][j].color) break;
                        ++cnt;
                        add(k * m + j, n * m + i * m + j, 8);
                    }
                    add(n * m + i * m + j, t, grid[i][j].y - cnt);
                }
                cnt = 0;
                if (grid[i][j].color && grid[i][j].x) {
                    for (int k = j + 1; k < m; k++) {
                        if (grid[i][k].color) break;
                        ++cnt;
                        add(i * m + j, i * m + k, 8);
                    }
                    add(s, i * m + j, grid[i][j].x - cnt);
                }
            }
        }
    }
    void print(int n, int m) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (grid[i][j].color == 1) {
                    printf("_%c", " 
    "[j==m-1]);
                    continue;
                }
                int res = 0;
                for (int k = head[i*m+j]; k; k = edge[k].nex) {
                    if (k % 2 == 0) res += edge[k].cap;
                }
                printf("%d%c", 9 - res, " 
    "[j==m-1]);
            }
        }
    }
    
    int main() {
        int n, m;
        while (~scanf("%d %d", &n, &m)) {
            init(2 * n * m);
            read_build(n, m);
            while (bfs()) maxflow += dinic(s, INF);
            print(n, m);
        }
        return 0;
    }
    View Code
    作者:_kangkang
    本文版权归作者和博客园共有,欢迎转载,但必须给出原文链接,并保留此段声明,否则保留追究法律责任的权利。
  • 相关阅读:
    java 中文排序 中文拼音排序 pinyin4j (怡,阿等) 拂晓风起
    jQuery 和 json 简单例子(注意callback函数的处理!!) (servlet返回json,jquery更新,java json) 拂晓风起
    推荐一个免费在线制作Banner的好地方
    Jquery焦点图/幻灯片效果 插件 KinSlideshow
    C#关于伪静态页面的两种实现方法
    cu3er 3D幻灯切换效果 div被遮住的解决方法
    推荐一个亲子教学网站,悟空学字
    怎么通过小米账号查出买家的手机号?
    添加网页桌面快捷方式的代码
    卖小米资格号怎么才不会受骗,怎么才不会淘宝退款?
  • 原文地址:https://www.cnblogs.com/kangkang-/p/11334952.html
Copyright © 2011-2022 走看看