zoukankan      html  css  js  c++  java
  • Elasticsearch(GEO)空间检索查询

    Elasticsearch(GEO)空间检索查询python版本

    1、Elasticsearch

    ES的强大就不用多说了,当你安装上插件,搭建好集群,你就拥有了一个搜索系统。

    当然,ES的集群优化和查询优化就是另外一个议题了。这里mark一个最近使用的es空间检索的功能。

    2、ES GEO空间检索

    空间检索顾名思义提供了通过空间距离和位置关系进行检索的能力。有很多空间索引算法和类库可供选择。

    ES内置了这种索引方式。下面详细介绍。

    step1:创建索引

    def create_index():
        mapping = {
            "mappings": {
                "poi": {
                    "_routing": {
                        "required": "true",
                        "path": "city_id"
                    },
                    "properties": {
                        "id": {
                            "type": "integer"
                        },
                        "geofence_type": {
                            "type": "integer"
                        },
                        "city_id": {
                            "type": "integer"
                        },
                        "city_name": {
                            "type": "string",
                            "index": "not_analyzed"
                        },
                        "activity_id": {
                            "type": "integer"
                        },
                        "post_date": {
                            "type": "date"
                        },
                        "rank": {
                            "type": "float"
                        },
                        # 不管是point还是任意shape, 都用geo_shape,通过type来设置
                        # type在数据里
                        "location_point": {
                            "type": "geo_shape"
                        },
                        "location_shape": {
                            "type": "geo_shape"
                        },
                        # 在计算点间距离的时候, 需要geo_point类型变量
                        "point": {
                            "type": "geo_point"
                        }
                    }
                }
            }
        }
        # 创建索引的时候可以不 mapping
        es.create_index(index='mapapp', body=mapping)
        # set_mapping = es_dsl.set_mapping('mapapp', 'poi', body=mapping)

    这里我们创建了一个名叫mapapp的索引,映射的设置如mapping所示。

    2、批量插入数据bulk

    def bulk():
    # actions 是一个可迭代对象就行, 不一定是list
    workbooks = xlrd.open_workbook('./geo_data.xlsx')
    table = workbooks.sheets()[1]
    colname = list()
    actions = list()
    for i in range(table.nrows):
    if i == 0:
    colname = table.row_values(i)
    continue
    geo_shape_point = json.loads(table.row_values(i)[7])
    geo_shape_shape = json.loads(table.row_values(i)[8])
    geo_point = json.loads(table.row_values(i)[9])
    raw_data = table.row_values(i)[:7]
    raw_data.extend([geo_shape_point, geo_shape_shape, geo_point])
    source = dict(zip(colname, raw_data))
    geo = GEODocument(**source)
    action = {
    "_index": "mapapp",
    "_type": "poi",
    "_id": table.row_values(i)[0],
    "_routing": geo.city_id,
    #"_source": source,
    "_source": geo.to_json(),
    }
    actions.append(action)
    es.bulk(index='mapapp', actions=actions, es=es_handler, max=25)

    刷入测试数据,geo_data数据形如:

    id    geofence_type    city_id    city_name    activity_id    post_date    rank    location_point    location_shape    point
    1    1    1    北京    100301    2016/10/20    100.30     {"type":"point","coordinates":[55.75,37.616667]}    {"type":"polygon","coordinates":[[[22,22],[4.87463,52.37254],[4.87875,52.36369],[22,22]]]}    {"lat":55.75,"lon":37.616667}
    2    1    1    北京    100302    2016/10/21    12.00     {"type":"point","coordinates":[55.75,37.616668]}    {"type":"polygon","coordinates":[[[0,0],[4.87463,52.37254],[4.87875,52.36369],[0,0]]]}    {"lat":48.8567,"lon":2.3508}
    3    1    1    北京    100303    2016/10/22    3432.23     {"type":"point","coordinates":[55.75,37.616669]}    {"type":"polygon","coordinates":[[[4.8833,52.38617],[4.87463,52.37254],[4.87875,52.36369],[4.8833,52.38617]]]}    {"lat":32.75,"lon":37.616668}
    4    1    1    北京    100304    2016/10/23    246.80     {"type":"point","coordinates":[52.4796, 2.3508]}    {"type":"polygon","coordinates":[[[4.8833,52.38617],[4.87463,52.37254],[4.87875,52.36369],[4.8833,52.38617]]]}    {"lat":11.56,"lon":37.616669}

    3、GEO查询:两点间距离

    # 点与点之间的距离
    # 按照距离升序排列,如果size取1个,就是最近的
    def sort_by_distance():
        body = {
            "from": 0,
            "size": 1,
            "query": {
                "bool": {
                    "must": [{
                        "term": {
                            "geofence_type": 1
                        }
                    }, {
                        "term": {
                            "city_id": 1
                        }
                    }]
                }
            },
            "sort": [{
                "_geo_distance": {
                    "point": {
                        "lat": 8.75,
                        "lon": 37.616
                    },
                    "unit": "km",
                    "order": "asc"
                }
            }]
        }
        for i in es.search(index='mapapp', doc_type='poi', body=body)['hits']['hits']:
            print type(i), i

    4、GEO查询:边界框过滤

    tips:大家都知道,ES的过滤是会生成缓存的,所以在优化查询的时候,常常需要将频繁用到的查询提取出来作为过滤呈现,但不幸的是,对于GEO过滤不会生成缓存,所以没有必要考虑,这里为了做出区分,使用post_filter,查询后再过滤,下面的都类似。

    # 边界框过滤:用框去圈选点和形状
    # 这里实现了矩形框选中
    # post_filter后置filter, 对查询结果再过滤; aggs常用后置filter
    def bounding_filter():
        body = {
            "from": 0,
            "size": 1,
            "query": {
                "bool": {
                    "must": [{
                        "term": {
                            "geofence_type": 1
                        }
                    }, {
                        "term": {
                            "city_id": 1
                        }
                    }]
                }
            },
            "post_filter": {
                "geo_shape": {
                    "location_point": {
                        "shape": {
                            "type": "envelope",
                            "coordinates": [[52.4796, 2.3508], [48.8567, -1.903]]
                        },
                        "relation": "within"
                    }
                }
            }
        }
        for i in es.search(index='mapapp', doc_type='poi', body=body)['hits']['hits']:
            print type(i), i

    5、GEO查询:圆形圈选

    # 边界框过滤: 圆形圈选
    # post_filter后置filter, 对查询结果再过滤; aggs常用后置filter
    def circle_filter():
        body = {
            "from": 0,
            "size": 1,
            "query": {
                "bool": {
                    "must": [{
                        "term": {
                            "geofence_type": 1
                        }
                    }, {
                        "term": {
                            "city_id": 1
                        }
                    }]
                }
            },
            "post_filter": {
                "geo_shape": {
                    "location_point": {
                        "shape": {
                            "type": "circle",
                            "radius": "10000km",
                            "coordinates": [22, 45]
                        },
                        "relation": "within"
                    }
                }
            }
        }
        for i in es.search(index='mapapp', doc_type='poi', body=body)['hits']['hits']:
            print type(i), i

    6、GEO查询:反选

    # 边界框反选:点落在框中,框被查询出来
    # post_filter后置filter, 对查询结果再过滤; aggs常用后置filter
    # 包含正则匹配regexp
    def intersects():
        body = {
           "from": 0,
           "size": 1,
           "query": {
                "bool": {
                    "must": [{
                        "term": {
                            "geofence_type": 1
                        }
                    }, {
                        "regexp": {
                            "city_name": u".*北京.*"
                        }
                    }, {
                        "term": {
                            "city_id": 1
                        }
                    }]
                }
           },
           "post_filter": {
                "geo_shape": {
                    "location_shape": {
                        "shape": {
                            "type": "point",
                            "coordinates": [22,22]
                        },
                        "relation": "intersects"
                    }
                }
           }
        }
        for i in es.search(index='mapapp', doc_type='poi', body=body)['hits']['hits']:
            print type(i), i

    7、最后粘两个空间聚合的例子,作为参考

    # 空间聚合
    # 按照与中心点距离聚合
    def aggs_geo_distance():
        body = {
            "aggs": {
                "aggs_geopoint": {
                    "geo_distance": {
                        "field": "point",
                        "origin": {
                            "lat": 51.5072222,
                            "lon": -0.1275
                        },
                        "unit": "km",
                        "ranges": [
                            {
                                "to": 1000
                            },
                            {
                                "from": 1000,
                                "to": 3000
                            },
                            {
                                "from": 3000
                            }
                        ]
                    }
                }
            }
        }
        for i in es.search(index='mapapp', doc_type='poi', body=body)['aggregations']['aggs_geopoint']['buckets']:
            print type(i), i
    
    
    # 空间聚合
    # geo_hash算法, 网格聚合grid
    # 两次聚合
    def aggs_geohash_grid():
        body = {
            "aggs": {
                "new_york": {
                    "geohash_grid": {
                        "field":     "point",
                        "precision": 5
                    }
                },
                "map_zoom": {
                    "geo_bounds": {
                        "field": "point"
                  }
                }
              }
        }
        for i in es.search(index='mapapp', doc_type='poi', body=body)['aggregations']['new_york']['buckets']:
            print type(i), i
  • 相关阅读:
    unity3d应用内分享(微信、微博等)的实现
    Cocostudio 文章列表
    C++ 文章列表
    Android 文章列表
    js函数节流和函数防抖
    js实现队列-通过闭包方式
    初学js正则
    Android网络图片加载
    利用html5制作正方体,同时实现3D旋转效果
    Python模块——random随机模块
  • 原文地址:https://www.cnblogs.com/kangoroo/p/6050692.html
Copyright © 2011-2022 走看看