zoukankan      html  css  js  c++  java
  • 使用YOLOv2进行图像检测

    • 基本配置信息

    tensorflow (1.4.0)

    tensorflow-tensorboard (0.4.0)

    Keras (2.1.5)

    Python (3.6.0)

    Anaconda 4.3.1 (64-bit)

    Windows 7

    • darknet链接

    https://github.com/pjreddie/darknet

    下载后在cfg文件夹下找到yolov2的配置文件yolov2.cfg

     

    • yolov2权重文件链接

    https://pjreddie.com/darknet/yolov2/

    在页面中选择YOLOV2 weights下载

     

    • yad2k 链接

    https://github.com/allanzelener/YAD2K

    下载完成后将之前下载好的yolov2.cfg文件,YOLOV2 weights文件拷贝到yad2k目录下

     

    • 使用spyder 运行yad2k目录下的yad2k.py文件

    在运行配置里设置运行时所需的参数信息

     

    或使用命令行运行yad2k.py

    python yad2k.py yolov2.cfg yolov2.weights model_data/yolo.h5

    运行结果如图所示

     

    生成的yolo.h5文件在model_data文件夹内

     

    • 利用生成的权重信息,进行图像检测

    使用opencv调用电脑摄像头,进行视频图像信息的检测

    opencv版本

    opencv-python (3.2.0)

    yad2k目录下创建自己的demo,参考https://www.jianshu.com/p/3e77cefeb49b

     

      1 import cv2
      2 import os
      3 import time
      4 import numpy as np
      5 from keras import backend as K
      6 from keras.models import load_model
      7 
      8 from yad2k.models.keras_yolo import yolo_eval, yolo_head
      9 
     10 
     11 class YOLO(object):
     12     def __init__(self):
     13         self.model_path = 'model_data/yolo.h5'
     14         self.anchors_path = 'model_data/yolo_anchors.txt'
     15         self.classes_path = 'model_data/coco_classes.txt'
     16         self.score = 0.3
     17         self.iou = 0.5
     18 
     19         self.class_names = self._get_class()
     20         self.anchors = self._get_anchors()
     21         self.sess = K.get_session()
     22         self.boxes, self.scores, self.classes = self.generate()
     23 
     24     def _get_class(self):
     25         classes_path = os.path.expanduser(self.classes_path)
     26         with open(classes_path) as f:
     27             class_names = f.readlines()
     28         class_names = [c.strip() for c in class_names]
     29         return class_names
     30 
     31     def _get_anchors(self):
     32         anchors_path = os.path.expanduser(self.anchors_path)
     33         with open(anchors_path) as f:
     34             anchors = f.readline()
     35             anchors = [float(x) for x in anchors.split(',')]
     36             anchors = np.array(anchors).reshape(-1, 2)
     37         return anchors
     38 
     39     def generate(self):
     40         model_path = os.path.expanduser(self.model_path)
     41         assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'
     42 
     43         self.yolo_model = load_model(model_path)
     44 
     45         # Verify model, anchors, and classes are compatible
     46         num_classes = len(self.class_names)
     47         num_anchors = len(self.anchors)
     48         # TODO: Assumes dim ordering is channel last
     49         model_output_channels = self.yolo_model.layers[-1].output_shape[-1]
     50         assert model_output_channels == num_anchors * (num_classes + 5), 
     51             'Mismatch between model and given anchor and class sizes'
     52         print('{} model, anchors, and classes loaded.'.format(model_path))
     53 
     54         # Check if model is fully convolutional, assuming channel last order.
     55         self.model_image_size = self.yolo_model.layers[0].input_shape[1:3]
     56         self.is_fixed_size = self.model_image_size != (None, None)
     57 
     58         # Generate output tensor targets for filtered bounding boxes.
     59         # TODO: Wrap these backend operations with Keras layers.
     60         yolo_outputs = yolo_head(self.yolo_model.output, self.anchors, len(self.class_names))
     61         self.input_image_shape = K.placeholder(shape=(2, ))
     62         boxes, scores, classes = yolo_eval(yolo_outputs, self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou)
     63         return boxes, scores, classes
     64 
     65     def detect_image(self, image):
     66         start = time.time()
     67         #image = cv2.imread(image)
     68         #cv2.imshow('image',image)  
     69         y, x, _ = image.shape
     70 
     71         if self.is_fixed_size:  # TODO: When resizing we can use minibatch input.
     72             resized_image = cv2.resize(image, tuple(reversed(self.model_image_size)), interpolation=cv2.INTER_CUBIC)
     73             image_data = np.array(resized_image, dtype='float32')
     74         else:
     75             image_data = np.array(image, dtype='float32')
     76 
     77         image_data /= 255.
     78         image_data = np.expand_dims(image_data, 0)  # Add batch dimension.
     79 
     80         out_boxes, out_scores, out_classes = self.sess.run(
     81             [self.boxes, self.scores, self.classes],
     82             feed_dict={
     83                 self.yolo_model.input: image_data,
     84                 self.input_image_shape: [image.shape[0], image.shape[1]],
     85                 K.learning_phase(): 0
     86             })
     87         print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
     88 
     89         for i, c in reversed(list(enumerate(out_classes))):
     90             predicted_class = self.class_names[c]
     91             box = out_boxes[i]
     92             score = out_scores[i]
     93 
     94             label = '{} {:.2f}'.format(predicted_class, score)
     95             top, left, bottom, right = box
     96             top = max(0, np.floor(top + 0.5).astype('int32'))
     97             left = max(0, np.floor(left + 0.5).astype('int32'))
     98             bottom = min(y, np.floor(bottom + 0.5).astype('int32'))
     99             right = min(x, np.floor(right + 0.5).astype('int32'))
    100             print(label, (left, top), (right, bottom))
    101 
    102             cv2.rectangle(image, (left, top), (right, bottom), (255, 0, 0), 2)
    103             cv2.putText(image, label, (left, int(top - 4)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
    104         end = time.time()
    105         print(end - start)
    106         return image
    107 
    108     def close_session(self):
    109         self.sess.close()
    110 
    111  
    112 def detect_vedio(yolo):
    113     camera = cv2.VideoCapture(0)
    114    
    115     while True:
    116         res, frame = camera.read()
    117 
    118         if not res:
    119             break
    120 
    121         image = yolo.detect_image(frame)
    122         cv2.imshow("detection", image)
    123        
    124         if cv2.waitKey(1) & 0xFF == ord('q'):
    125             break
    126     yolo.close_session()
    127 
    128 
    129 def detect_img(img, yolo):
    130     image = cv2.imread(img)
    131     r_image = yolo.detect_image(image)
    132     cv2.namedWindow("detection")
    133     while True:
    134         cv2.imshow("detection", r_image)
    135         if cv2.waitKey(110) & 0xff == 27:
    136                 break
    137     yolo.close_session()
    138 
    139 
    140 if __name__ == '__main__':
    141     yolo = YOLO()
    142     detect_vedio(yolo)

     

     

  • 相关阅读:
    elment ui 日期限制
    javascript中的编码与解码
    vue3 px 转ref
    css 波浪线
    初始化css
    vue 3 的复制功能 vue-clipboard3
    二维数组转一维数组、对象数组互斥去重
    分享几个数组方法
    前端生成图形验证码
    rem自适应布局,移动版
  • 原文地址:https://www.cnblogs.com/kanjian2016/p/8867936.html
Copyright © 2011-2022 走看看