You are given n points on a plane. All the points are distinct and no three of them lie on the same line. Find the number of parallelograms with the vertices at the given points.
Input
The first line of the input contains integer n (1 ≤ n ≤ 2000) — the number of points.
Each of the next n lines contains two integers (xi, yi) (0 ≤ xi, yi ≤ 109) — the coordinates of the i-th point.
Output
Print the only integer c — the number of parallelograms with the vertices at the given points.
Sample Input
4
0 1
1 0
1 1
2 0
Output
1
题意:
给你n个点的坐标,问这n个点能形成多少个不相同的平行四边形?
思路:
(1) 根据平行四边形的性质,两条对角线相交于一点,所以可以将这n个点两两连接并找出它们的中点并记录下来。
(2) 然后根据这些中点来判断有多少个平行四边形,因为只要有两个中点重合,那么就能确定一个平行四边形。
(3) 所以先找出重合中点的个数s,那么它们可以组成的平行四边形个数为C(s,2)。将它们求和即可。
#include<bits/stdc++.h> using namespace std; struct node { int x,y; }a[2005]; int com(int n,int m) { int i,s=1; for(i=1;i<=m;i++) s=s*(n+1-i)/i; return s; } int main() { int n,i,j,s=0; map<pair<int,int>,int>ma; map<pair<int,int>,int>::iterator it; cin>>n; for(i=1;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y); for(i=1;i<=n-1;i++) for(j=i+1;j<=n;j++) ma[make_pair(a[i].x+a[j].x,a[i].y+a[j].y)]++; for(it=ma.begin();it!=ma.end();it++) s=s+com(it->second,2); printf("%d ",s); return 0; }