转载于:https://blog.csdn.net/mmy1996/article/details/52225893
Dijkstra
一、dijkstra算法本质上算是贪心的思想,每次在剩余节点中找到离起点最近的节点放到队列中,并用来更新剩下的节点的距离,再将它标记上表示已经找到到它的最短路径,以后不用更新它了。这样做的原因是到一个节点的最短路径必然会经过比它离起点更近的节点,而如果一个节点的当前距离值比任何剩余节点都小,那么当前的距离值一定是最小的。(剩余节点的距离值只能用当前剩余节点来更新,因为求出了最短路的节点之前已经更新过了)
dijkstra就是这样不断从剩余节点中拿出一个可以确定最短路径的节点最终求得从起点到每个节点的最短距离。
dijkstra就是这样不断从剩余节点中拿出一个可以确定最短路径的节点最终求得从起点到每个节点的最短距离。
Bellman-Ford
二、bellman-ford算法进行n-1次更新(一次更新是指用所有节点进行一次松弛操作)来找到到所有节点的单源最短路。bellman-ford算法和dijkstra其实有点相似,该算法能够保证每更新一次都能确定一个节点的最短路,但与dijkstra不同的是,并不知道是那个节点的最短路被确定了,只是知道比上次多确定一个,这样进行n-1次更新后所有节点的最短路都确定了(源点的距离本来就是确定的)。
现在来说明为什么每次更新都能多找到一个能确定最短路的节点:
1.将所有节点分为两类:已知最短距离的节点和剩余节点。
2.这两类节点满足这样的性质:已知最短距离的节点的最短距离值都比剩余节点的最短路值小。(这一点也和dijkstra一样)
3.有了上面两点说明,易知到剩余节点的路径一定会经过已知节点
4.而从已知节点连到剩余节点的所有边中的最小的那个边,这条边所更新后的剩余节点就一定是确定的最短距离,从而就多找到了一个能确定最短距离的节点,不用知道它到底是哪个节点。
bellman-ford的一个优势是可以用来判断是否存在负环,在不存在负环的情况下,进行了n-1次所有边的更新操作后每个节点的最短距离都确定了,再用所有边去更新一次不会改变结果。而如果存在负环,最后再更新一次会改变结果。原因是之前是假定了起点的最短距离是确定的并且是最短的,而又负环的情况下这个假设不再成立。
Spfa
三、spfa可以看成是bellman-ford的队列优化版本,正如在前面讲到的,bellman每一轮用所有边来进行松弛操作可以多确定一个点的最短路径,但是用每次都把所有边拿来松弛太浪费了,不难发现,只有那些已经确定了最短路径的点所连出去的边才是有效的,因为新确定的点一定要先通过已知(最短路径的)节点。所以我们只需要把已知节点连出去的边用来松弛就行了,但是问题是我们并不知道哪些点是已知节点,不过我们可以放宽一下条件,找哪些可能是已知节点的点,也就是之前松弛后更新的点,已知节点必然在这些点中。
所以spfa的做法就是把每次更新了的点放到队列中记录下来。
在效率上,当图很稠密的时候spfa就退化成和bellman -ford差不多了,因为对于入队的每个节点都要和很多节点去进行松弛操作。