Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
S (((()()())))
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
分析:
对于给出的序列,明显是一定不会下降的,
用ans[]来记录答案
当A[i]>A[j]时其对应的ans[i]=1;
注意到A[i]-ans[i]其实就是当前右括号对应的左括号的前面有多少个左括号
很明显对每个A[i]-ans[i]都是唯一的,用它来作为匹配过的左括号的编号,这个编号从0开始
所以当A[i]==A[i-1]时 令k=ans[i-1]+1;
不断增加k直到A[i]-k的值没有在前面出现过时,ans[i]=k;
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
1 #include <iostream> 2 #include <cstring> 3 using namespace std; 4 int f[100], g[100], ans[100]; 5 int t, n, k, sum; 6 int main() { 7 cin >> t; 8 while (t--) { 9 cin >> n; 10 memset (g, 0, sizeof g);//数组g用来记录使用过的左括号 11 for (int i = 1; i <= n; i++) { 12 cin >> f[i]; 13 if (f[i] > f[i - 1]) {//比前面的数大 14 ans[i] = 1;//ans[i]赋值为一 15 g[f[i] - ans[i]] = 1;//标记使用过的左括号 16 } 17 else { 18 int k = ans[i - 1] + 1; 19 while (g[f[i] - k]) k++;//找到没有使用过的左括号 20 g[f[i] - k] = 1; 21 ans[i] = k; 22 } 23 } 24 cout << ans[1]; 25 for (int i = 2; i <= n; i++) 26 cout << ' ' << ans[i]; 27 cout << endl; 28 } 29 return 0; 30 }
http://www.cnblogs.com/keam37/ keam所有 转载请注明出处